Numerical Computation of Rolling Resistance Based on the Result of Tire/Road Static Contact Analysis

Author(s):
Message:
Abstract:
Among various dissipating mechanisms, the viscoelastic effect of rubber material on creation of rolling resistance is responsible for 10-33% dissipation of supplied power at the tire/road interaction surface. So, evaluating this kind of loss is very essential in any analysis concerned with improving the fuel consumption of vehicles and resultantly energy savage. Hysteretic loss is a fraction of stored strain energy of tire which is dissipated during the rotational motion. In all related references and published articles, the hysteretic loss per revolution of tire is commonly considered as the rolling resistance. However, a reasonable approximation of stresses and strains time histories is very crucial for evaluating the amount of hysteretic loss. Based on the results of 3D static contact analysis, an efficient in-house program coded in Matlab is used for estimating the time variation of stress-strain cycles at different points of a rolling tire. Half the difference between maximum and minimum principal values of six stress and strain components can be used for evaluating the hysteretic loss during one revolution of a rolling tire. The results closely match the related experimental and numerical investigations.
Language:
Persian
Published:
Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Volume:8 Issue: 3, 2016
Pages:
185 to 196
https://www.magiran.com/p1495268