مقایسه مدل های شبکه عصبی مصنوعی، سری زمانی آریما و رگرسیون خطی چند متغیره در پیش بینی تغییرات سطح آب زیرزمینی

پیام:
چکیده:

پیش بینی نوسانات سطح آب زیرزمینی، جهت برنامه ریزی در مناطق خشک و نیمه خشک امری ضروری است. در این مطالعه برای پیش بینی نوسانات سطح آب زیرزمینی دو پیزومتر واقع در دشت کرمان از مدل های شبکه عصبی مصنوعی، سری زمانی آریما و رگرسیون خطی چند متغیره استفاده شد. برای دستیابی به این منظور از عمق آب زیرزمینی ماهانه پیزومترهای مذکور طی سال های 1392 -1381 استفاده گردید. نتایج بررسی حالت های مختلف مدل سری زمانی آریما نشان داد که مدل سری زمانی آریما (1و1و0) و (2و0و2) برای پیزومتر جنوب باغین و مدل سری زمانی آریما (1و1و1) و (0و0و2) برای پیزومتر اراضی فرودگاه بهترین برازش را با داده ها داشته است. در مدل های شبکه عصبی مصنوعی MLP و RBF مدل MLP با 2 و 4 لایه پنهان برای پیزومترهای جنوب باغین و مدل RBF با 8 و 10 لایه پنهان برای پیزومترهای اراضی فرودگاه بهترین برازش را با داده ها داشته اند. در مدل سازی با روش رگرسیون خطی چندمتغیره، برای هر دو پیزومتر بهترین روابط مدل رگرسیون خطی چندمتغیره به دست آمده نشان داد که رابطه رگرسیون خطی چندمتغیره عمق آب زیرزمینی ماه فعلی تابعی از عمق آب زیرزمینی یک ماه قبل است؛ به عبارت دیگر عمق آب زیرزمینی، بیشترین وابستگی را به عمق آب زیرزمینی ماه قبل دارد. نتایج آزمون معیار خطا و همچنین نتایج مقایسه مقادیر پیش بینی مدل های MLP، RBF ، ARIMA، و مدل رگرسیون خطی چند متغیره با مقادیر واقعی پیزومترها نشان داد، که پیش بینی عمق آب زیرزمینی به وسیله مدل رگرسیون خطی چندمتغیره از مدل های شبکه عصبی و سری زمانی آریما بهتر بوده است.

نوع مقاله:
مقاله پژوهشی/اصیل
زبان:
فارسی
صفحات:
126 -139
لینک کوتاه:
magiran.com/p2028203 
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!