Sedimentology and depositional paleo-environments of Quaternary alluviums determination using sedimentology and ground penetration radar (GPR) data combination, a case study: Kouchesfahan area- Guilan province

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Sedimentary environments are the best place to keep records of past events and evidence of fundamental events occurring on the surface of the earth within sedimentary units and their discontinuities. The identification and separation of these sedimentary units have often been the goal of many geological projects with different scientific and practical objectives. Detection of the alluvial deposit has always been of high importance when combined with their study. These hybrid studies are usually carried out in direct (sampling) and indirect methods (geophysical methods). In previous studies, in almost all researches, the necessity of carrying out sedimentology studies to better interpret the identified sequences and their adaptation to GPR studies has been emphasized by the researchers. This combination of studies, in addition to separating different units in terms of grain size, may include other factors such as the presence the quality and depth of fluid (ground water and water table), uniformity of particle size (sorting), particle size, and sedimentary structures. The main objective of this research is to identify sediments and ambient environments of alluvial soils by integrating the data from sedimentation from wells and GPR. The study area is located in Guilan province, between Kouchesfahan and Lasht-e-Nesha cities in the coastal plain of the Caspian Sea. The climate of the study area is humid and the annual rainfall is an average of 800 mm. From geomorphology point of view, the northern boundary of the Alborz is in accordance with the cluster of tertiary deposits and the coastal plain of the Caspian Sea. Under the sea terraces and alluvial plain covers, there are the Miocene-Pliocene-Quaternary marine rocks that have been displaced by the retreat of the Caspian Sea.

Material and Methods

Firstly, GPR data (using 100 megahertz antenna, MALA) was taken to 11 km long land along the Kouchesfahan road to the Lasht-e-Nesha. Then, according to the radar profiles, they were drilling 7 sedimentary boreholes for media depth 2.7m to combine with sedimentology data. Global Positioning System is used to determine the location. the resulting data for the processing stages entered the Reflex-W software. After performing the necessary processing considering the radar facies and the depth of penetration of the waves in the radar profiles, suitable points for drilling boreholes were selected for a sampling of subsurface sediments (7 stations). The average depth of the drilled boreholes is 7.2 m. 42 Sediment samples were taken in each well based on the visible changes, including sediment type, grain size, color, moisture, and organic matter content. In the laboratory, grading experiments were carried out after the preparation of the samples (drying and separating organic matter), direct measurement of the dimensions with morphoscopy, dry sieving, and hydrometric method. In addition to the initial analysis of grain size, other statistical parameters such as the average of diameter, mean, sorting, skewness were measured.

Results and Discussion

Investigations have led to the identification of five radar facies (Reflectors no-continuous undulating with concave-convex pattern, Reflectors continuous with concave-convex pattern, Reflectors no-continuous with different angle, Reflectors no-continuous parallel with low angle, Reflectors no-continuous with low angle and attenuation high and nine sedimentary facies; silty very fine Sand (Zs), fine Sand (s), sandy Gravel (sG), gravely fine Sand (gS), organic matter (O), silty coarse Sand (zs), coarse Sand(S), muddy slightly gravelly sand (g)Ms, which represent different parts of the river environment, including the river canal and floodplain. In this region, the amount of fine-grained particles and organic matter increases from the south to the north. The facies are likely to be part of the old channel of the Sefidrud River when the channel has been redirected to the east. Changes in the percentage of grain size in the boreholes have irregular variations, which the number of fine grain particles is increased from the upstream to downstream of the region. Grains tend to be coarser from the bottom to the top of the boreholes and finer toward the shore. Sorting are bad and very bad in most samples, which indicates the deposition of finer grain particles among coarse grains. From the upstream side, in most drilled boreholes, sediments show a finning and a coarsening upward sequence that indicates the energy fluctuations of the environment over time.

Conclusion

The results of this study showed that wet, fine-grained with high organic matter content environments cause the destruction of the wave and including the radar method's limitations. Also, in urban environments and through the passageways, vehicle overpasses and power rails affect radar profiles and cause the radar profile to be illegible. In the studied area, the depth of effective influence of the waves is not more than 3 meters. In this research, based on valid scientific classification, 5 radar facies and 9 sedimentary facies related to different sedimentary environments were identified. The results showed that radial facies, with respect to depth, particle size, moisture, organic matter and evaporates content limitations, can be very good for identification of various sediments, especially at low and near depths. By performing this research and matching the sedimentary and radial facies, the ability of the two methods in another interpretation was also identified and such adaptations can be applied in other areas with great confidence.

Language:
Persian
Published:
Quaternery journal of Iran, Volume:4 Issue: 16, 2019
Pages:
435 to 456
magiran.com/p2041505  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!