The application of Deep Learning in Persian Documents Sentiment Analysis

Article Type:
Research/Original Article (دارای رتبه معتبر)

Nowadays the amount of textual information on the web is grown rapidly. The huge textual data needs more accurate classification algorithms. Sentiment analysis is a branch of text classification that is used to classify user opinions in case of market decisions, product evaluations or measuring consumer confidence. With the rise of the production rate of Persian text data in a commercial area, improvement of the efficiency of algorithms in Persian is a must. The structure of the Persian language such as word and sentence structures poses some challenges in this area. Deep learning algorithms are recently used in NLP and especially sentiment text classification for many dominant languages like Persian. The goal is to improve the performance of classification using deep learning issues. In this work, the authors proposed a hybrid method by a combination of structural correspondence learning (SCL) and convolutional neural network (CNN). The SCL method selects the most effective pivot features so the adaptation from one domain to similar ones cannot drop the efficiency drastically. The results showed that the proposed hybrid method that is learned from one domain can act efficiently in a similar domain. The result showed that applying a combination of SCL+CNN can improve the result of sentiment classification for two domains more than 10 percent

International Journal of Information Science and Management, Volume:18 Issue: 1, Jan-Jun 2020
1 to 15  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!