A Simple Classification of Finite Groups of Order p2q2

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

‎Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, ‎respectively‎. ‎In this paper‎, ‎we show that up to isomorphism‎, ‎there are four groups of order p^2q^2 when Q and P are cyclic‎, ‎three groups when Q is a cyclic and P is an elementary ablian group‎, ‎p^2+3p/2+7 groups when Q is an elementary ablian group and P is a cyclic group and finally‎, ‎p‎ + ‎5 groups when both Q and P are elementary abelian groups.‎

Language:
English
Published:
Mathematics Interdisciplinary Research, Volume:3 Issue: 2, Autumn 2018
Pages:
89 to 98
https://www.magiran.com/p2113891  
سامانه نویسندگان
  • Ghorbani، Modjtaba
    Author (2)
    Ghorbani, Modjtaba
    Professor Mathematics, Shahid Rajaee Teacher Training University, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)