Numerical simulation the effect of back rake angle PDC cutter on the rock fracture mechanism using discrete element method
In the oil, construction and mining industry, different types of cutting tools using to extract rock materials. Hence, the investigation of the reaction of the cutting tool with the stone can be a suitable method for analyzing the problems associated with the failure occurred at the time of drilling. One of the factors affecting rock failure mechanism At the time of drilling Geometry of the cutting tool (cutter), Which has a significant impact on Mechanical specific energy (energy required to cut through a unit volume of rock). Numerical methods DEM One of the most advanced methods for modeling issues Which is accompanied by a strain and a deformation. The main goal of this research is rock cutting simulation and examining the effect of the bake rake angle on the cutter PDC performance On two samples of sedimentary rock (sand stone, limestone). The instrument used in this study numerical software particle flow code (PFC2D) which simulates the mechanical behavior of material using a distinct elemental method (DEM), Based on the results, limestone needs more Mechanical specific energy than sandstone, This can be due to more limestone resistance to sandstone. But increasing the back rake angle from 10 degrees to 40 degrees increases the Mechanical specific energy consumption. In fact, horizontal force cutting is a major factor affecting the amount of Mechanical specific energy. In addition, the results of the surveys show The mechanism of the flow of crushed material in front of the cutter blades Function of cutter geometry and the friction angle between the cutter and the crushed particles. and is one of the effective factors in the amount of Mechanical special energy.