Evaluation of microstructure and hardness in repair with OAW method in copper DHP moulds

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

The surface of continuous casting moulds with high number of castings may be worn or destructed. As result, an approach for increasing these moulds life is necessary. In this project, the goal is the restoration of the DHP copper sample. In this project, the destruction of the copper sample is done by creation of groove using a CNC machine. The restoration of the sample is done using OAW and filler to fill groove area. In this project, the effect of preheating temperature, filler type and heat treatment of welding area on hardness, microstructure, chemical analyses of welding area and thermal conductivity of the weld are investigated. The preheating temperature range of 300 to 450oC was selected. The Cu-P and Cu-Ag-P fillers were chosen to fill the groove of the weld area. The scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDS), micro hardness tester, optical microscope and thermal conductivity meter were employed for evaluation of the results in this project. The results showed that the increase of preheating temperature creates oxide layers and the decrease of preheating temperature causes the incomplete filling of the welding area. Finally, the preheating temperature of 400 oC was a proper choice considering the above mentioned factors. The stress relieving operation to decrease stress and preserve the mechanical properties in the temperature of 250 to 400 oC and duration two hours was carried out. The result demonstrated that the selected temperature causes no unwanted decrease on the hardness. It was also found that increasing the annealing duration, decreases the hardness of weld for Cu-P filler for Cu-Ag-P filler increasing the annealing duration, first decreases the weld hardness and then increases the weld hardness. The Cu-P filler was compared with Cu-Ag-P filler. The results showed that the Cu-Ag-P filler has less hardness (around 10 percent) than the filler without silver. On the other hand, the thermal conductivity of the Cu-Ag-P filler was around 10 percent more than the thermal conductivity of the Cu-P. It is obvious that the selection of the filler type depends on the type of base metal and its geometry. The results showed that the segregation in the Cu-P filler with 7.2 percent phosphorous, because of the proximity of the weld structure to the eutectic point, has slightly happened; while, the selection of the Cu-Ag-P filler with 6 percent silver caused severe segregation of silver to 90 percent silver at the center of weld at the non-dendrite area

Language:
Persian
Published:
Journal of Welding Science and Technology of Iran, Volume:6 Issue: 1, 2020
Pages:
67 to 80
magiran.com/p2171973  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!