In Silico Study of Pacific oyster Antiviral Polypeptides as Potential Inhibitory Compounds for SARS-CoV-2 Main Protease

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel pathogen that has triggered a pneumonia outbreak, and despite the measures, the pandemic still continues to occur.

Objectives

The molecular docking analysis was used to test whether the human immunodeficiency virus 1 (HIV-1) protease inhibitory peptides. These marine polypeptides were isolated from the hydrolysate of Pacific oyster.

Methods

Molecular docking process was performed using Molegro Virtual Docker software. The protein data bank file of the crystal structure of COVID-19 main protease in complex with an inhibitor N3 (ID 6LU7) was obtained from the PubChem data source. After preparing protein and removing water and internal ligand, the major cavity was selected for the next step, the docking procedure. Afterward, the MolDock score, Rerank score, Total interaction energy (between energy), and HBond item were calculated. The Remdesivir was used as a positive control in the docking project.

Results

The results of the docking step were evaluated based on several bioinformatics docking scores, including MolDock score, Rerank score, Total interaction energy (between energy), and HBond. The hydrogen bond of remdesivir was -6.03673, and Leu-Leu-Glu-Tyr-Ser-Ileu polypeptide was -6.44185. The Rerank score of remdesivir was -98.9254 and for Leu-Leu-Glu-Tyr-Ser-Ileu polypeptide was -107.821. Of the two screened Pacific oyster polypeptides, the score of Leu-Leu-Glu-Tyr-Ser-Ileu ligand was higher than remdesivir.

Conclusions

This study demonstrated that Pacific oyster compounds may have the potency to be evolved as an anti-COVID-19 main protease drug to fight against the novel coronavirus; however, preclinical and clinical trials are needed for further experimental and/or clinical scientific validation.

Language:
English
Published:
Jentashapir Journal of Cellular and Molecular Biology, Volume:11 Issue: 3, Sep 2020
Page:
8
magiran.com/p2206951  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!