Classifying people based on fat by a Neuro-Fuzzy System
Using BIA for body fat calculation is a normal method. The body fat factor is one of the most useful measures for assessing the risk of obesity. In this research, people are classified based on body fat. This research does not use any device. Adaptive Network-based Fuzzy Inference System (ANFIS) which is widely used in medical sciences, has been used to predict the exact category of fat.
A nutrition clinic in Tehran has collected 610 samples from its patients. Each data has six attributes: age, height, weight, BMI, gender, and fat percentage. Based on percentage fat, people are divided into six fat classes from very low fat to very high fat. This research uses ANFIS system to estimate body fat class. Age, height, weight, BMI, and gender are used as inputs of the system and fat class as output. Furthermore, for evaluating the proposed method, precision method is used.
This research used machine learning techniques (i.e., ANFIS) to predict the class of fat people without using costly tools. The data showed that our method has an accuracy of 90.83%.
The results of this research show that using ANFIS can estimate accurately the category of body fat without any device. Therefore, it reduces diagnosis price.
-
A Comparative Study on English and Khezeli Kurdish Dialect Adjuncts Based on Halliday 2004
*, Marzban Nazari, Tayebeh Khoshbakht, Ali Jamali
Ilam Culture, -
Relationship between Iranian Undergraduate English Students’ Bodily-Kinesthetic Intelligence and their Grammar Knowledge
Nasrin Garavand, *, Habib Gowhary, Shahram Welidi
International Journal of Foreign Language Teaching and Research, Winter 2023