‎Some‎ relations between ‎$‎L^p‎$‎-spaces on locally compact group ‎$‎G‎$ ‎and‎ double coset $Ksetminus G/H‎$

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate that $L^p(Ksetminus G/H, mu)$ is isometrically isomorphic to a closed subspace of $L^p(G)$. These assist us to study the structure of the classical Banach space created on a double coset space by those produced on topological space.
Language:
English
Published:
Journal of Linear and Topological Algebra, Volume:9 Issue: 2, Spring 2020
Pages:
149 to 163
https://www.magiran.com/p2260233