Deep Neural Network with Extracted Features for Social Group Detection

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and Objectives

Video processing is one of the essential concerns generally regarded over the last few years. Social group detection is one of the most necessary issues in crowd. For human-like robots, detecting groups and the relationship between members in groups are important. Moving in a group, consisting of two or more people, means moving the members of the group in the same direction and speed.

Methods

Deep neural network (DNN) is applied for detecting social groups in the proposed method using the parameters including Euclidean distance, Proximity distance, Motion causality, Trajectory shape, and Heat-maps. First, features between pairs of all people in the video are extracted, and then the matrix of features is made. Next, the DNN learns social groups by the matrix of features.

Results

The goal is to detect two or more individuals in social groups. The proposed method with DNN and extracted features detect social groups. Finally, the proposed method’s output is compared with different methods.

Conclusion

In the latest years, the use of deep neural networks (DNNs) for learning and detecting has been increased. In this work, we used DNNs for detecting social groups with extracted features. The indexing consequences and the outputs of movies characterize the utility of DNNs with extracted features.  The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

Language:
English
Published:
Journal of Electrical and Computer Engineering Innovations, Volume:9 Issue: 1, Winter-Spring 2021
Pages:
47 to 56
https://www.magiran.com/p2261039  
سامانه نویسندگان
  • Corresponding Author (2)
    Hassan Farsi
    Professor Department of Electrical and Computer Engineering, University Of Birjand, Birjand, Iran
    Farsi، Hassan
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)