Reverses of the first Hermite-Hadamard type inequality for the square operator modulus in Hilbert spaces
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Let $left( H;leftlangle cdot ,cdot rightrangle right)$ be a complex Hilbert space. Denote by $mathcal{B}left( Hright)$ the Banach $C^{ast }$-algebra of bounded linear operators on $H$. For $Ain mathcal{B}left(Hright)$ we define the modulus of $A$ by $leftvert Arightvert :=left(A^{ast }Aright) ^{1/2}$ and $func{Re}A:=frac{1}{2}left( A^{ast}+Aright).$ In this paper we show among other that, if $A,$ $Bin mathcal{B}left( Hright)$ with $0leq mleq leftvert left( 1-tright)A+tBrightvert ^{2}leq M$ for all $tin left[ 0,1right],$ then begin{align*} 0& leq int_{0}^{1}fleft( leftvert left( 1-tright) A+tBrightvert^{2}right) dt-fleft( frac{leftvert Arightvert ^{2}+func{Re}left(B^{ast }Aright) +leftvert Brightvert ^{2}}{3}right) \ & leq 2left[ frac{fleft( mright) +fleft( Mright) }{2}-fleft( frac{m+M}{2}right) right] 1_{H} end{align*} for operator convex functions $f:[0,infty )rightarrow mathbb{R}$. Applications for power and logarithmic functions are also provided.
Keywords:
Language:
English
Published:
Journal of Linear and Topological Algebra, Volume:11 Issue: 1, Winter 2022
Pages:
1 to 13
https://www.magiran.com/p2410788