A generalization of the n^th- commutativity degree in finite groups

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:

In this paper, we study the number of solutions of commutator equation [x^{n},y]=g in two classes of finite groups. For $g in G$ we consider $ rho^{n}_g(G)={(x,y)| x,yin G, [x^{n},y]=g}$ . Then the probability that the commutator equation [x^{n},y]=g has a solution in a finite group $G$, written , $P^{n}_g(G)$ is equal to $frac{|rho^{n}_{g}(G)|}{|G|^2}$ . By using the numerical solutions of the equation $xy - zu equiv t(bmod~n)$ we derive formulas for calculating the probability of $P^{n}_g(G)$, for some finite groups $G$ .

*The formulas are not displayed correctly.

Language:
English
Published:
Computational Sciences and Engineering, Volume:2 Issue: 1, Spring 2022
Pages:
33 to 40
https://www.magiran.com/p2417636  
سامانه نویسندگان
  • Mina Pirzadeh
    Corresponding Author (1)
    Pirzadeh، Mina
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)