Second-Order Perturbation in Adaptive Perturbation Method

Author(s):
Message:
Abstract:

The perturbation method is an approximation scheme with a solvable leading order. The standard way is to choose a non-interacting sector for the leading order. The adaptive perturbation method improves the solvable part by using all diagonal elements for a Fock state. We consider the harmonic oscillator with the interacting term, λ1x4/6 + λ2x6/120, where λ1 and λ2 are coupling constants, and x  is the position operator. The spectrum shows a quantitative result from the second-order, less than 1 percent error, compared to a numerical solution when turning off the λ2. When we turn on the λ2, more deviation occurs, but the error is still less than 2 percent. We show a quantitative result beyond a weak-coupling region. Our study should provide interest in the holographic principle and strongly coupled boundary theory.

Language:
English
Published:
Journal of Holography Applications in Physics, Volume:2 Issue: 4, Autumn 2022
Pages:
37 to 44
https://www.magiran.com/p2508880