Improving recurrent forecasting in singular spectrum analysis using Kalman filter algorithm

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
One of the most practical nonparametric methods in analysis of time series observations is the singular spectrum analysis method‎. ‎This method has been developed and applied to many practical problems across different fields and continuous efforts have been made to improve this method‎, ‎especially in forecasting‎. ‎In this paper‎, ‎the state space model and Kalman filter algorithms are used for noise elimination and time series smoothing‎. ‎Finally‎, ‎we compare these forecasting methods' abilities using the root mean squared error criteria for simulation studies and the real datasets.
Language:
English
Published:
Journal of Statistical Modelling: Theory and Applications, Volume:3 Issue: 1, Winter and Spring 2022
Pages:
135 to 146
https://www.magiran.com/p2559687  
سامانه نویسندگان
  • Yarmohammadi، Masoud
    Corresponding Author (1)
    Yarmohammadi, Masoud
    Associate Professor Department of Statistics, Payame Noor University, تهران, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)