A Hidden‎ Markov Model‎ ‎Based‎ ‎Extended Case-Based Reasoning Algorithm for Relief Materials Demand Forecasting

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

‎In emergency situations‎, ‎accurate demand forecasting for relief materials such as food‎, ‎water‎, ‎and medicine is crucial for effective disaster response‎. ‎This research is presented a novel algorithm to demand forecasting for relief materials using extended Case-Based Reasoning (CBR) with the best-worst method (BWM) and Hidden Markov Models (HMMs)‎. ‎The proposed algorithm involves training an HMM on historical data to obtain a set of state sequences representing the temporal fluctuations in demand for different relief materials‎. ‎When a new disaster occurs‎, ‎the algorithm first determines the current state sequence using the available data and searches the case library for past disasters with similar state sequences‎. ‎The effectiveness of the proposed algorithm is demonstrated through experiments on real-world disaster data of Iran‎. ‎Based on the results‎, ‎the forecasting error index for four relief materials is less than 10\%; therefore‎, ‎the proposed CBR-BWM-HMM is a strong and robust algorithm‎.

Language:
English
Published:
Mathematics Interdisciplinary Research, Volume:9 Issue: 1, Winter 2024
Pages:
89 to 109
https://www.magiran.com/p2700125  
سامانه نویسندگان
  • Ghasemian Sahebi، Iman
    Author (4)
    Ghasemian Sahebi, Iman
    (1401) دکتری مدیریت تولید و عملیات، دانشگاه تهران
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)