تحلیل عدم قطعیت مدل های شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در پیش بینی جریان ماهانه رودخانه (مطالعه موردی: رودخانه قزل اوزن)

پیام:
نوع مقاله:
مطالعه موردی (دارای رتبه معتبر)
چکیده:

در یک دهه اخیر، روش های هوش مصنوعی بیش ترین کاربرد را در شبیه سازی فرآیندهای مختلف از جمله فرآیندهای هیدرولوژیکی داشته اند، اما نتایج این روش ها همواره با عدم قطعیت همراه بوده اند. یکی از راه حل هایی که می تواند تا حدودی این مشکل را حل نماید، تحلیل عدم قطعیت پیش بینی های صورت گرفته است. در مطالعه حاضر عدم قطعیت نتایج مدل های شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در پیش بینی جریان ماهانه رودخانه با استفاده از شبیه سازی مونت-کارلو و مقادیر 95PPU و d-factor مورد ارزیابی قرار گرفته است. در این پژوهش از داده ها و سری زمانی جریان ماهانه رودخانه قزل اوزن در یک دوره 39 ساله از سال 1355 تا 1393 برای ایستگاه آب سنجی بیانلو-یساول استفاده شده است که 75 درصد داده ها برای آموزش و 25 درصد برای آزمون مدل ها به کار رفته است. در این مدل ها به منظور تخمین جریان رودخانه، شش ترکیب مختلف ورودی شامل جریان یک، دو و سه ماه قبل و شماره ماه های جریان مورد استفاده قرار گرفت. برای ارزیابی مدل ها از معیارهای آماری ضریب همبستگی (R) و ریشه میانگین مربعات خطا (RMSE) استفاده شد. نتایج نشان داد که اگر چه مدل ANN با مقادیر R مساوی با 757/0 و RMSE مساوی با 45/9 دارای عملکرد خوبی نسبت به مدل SVM با مقادیر R مساوی با 729/0 و RMSE مساوی با 946/10 در پیش بینی جریان رودخانه است. اما نتایج این مدل با عدم قطعیت زیادی همراه است. مقایسه تحلیل عدم قطعیت نتایج مدل ها نشان داد که مدل SVM با مقادیر d-factor و 95PPU به ترتیب برابر با 155/0 و 241/17 نسبت به مدل ANN با مقادیر d-factor و 95PPU به ترتیب برابر با 993/0 و 470/85 از عدم قطعیت کم تری برخوردار است و از این لحاظ بر مدل ANN برتری دارد. مطابق نتایج این پژوهش باید با در نظر گرفتن این نکته که مدل های پیشرفته هوش مصنوعی نیز دارای عدم قطعیت هستند، نسبت به کاربرد این روش ها در زمینه های مدیریت ریسک و برنامه ریزی های آینده اقدام کرد تا بهترین عملکرد را به دست آورد.

زبان:
فارسی
صفحات:
311 تا 326
لینک کوتاه:
https://www.magiran.com/p2742806 
سامانه نویسندگان
  • مهندس پویا اللهویردی پور
    نویسنده مسئول (2)
    مهندس پویا اللهویردی پور
    دانشجوی دکتری مهندسی منابع آب، مهندسی آب، کشاورزی، دانشگاه تبریز، تبریز، ایران
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)