Flexible Parsimonious Mixture of Skew Factor Analysis‎ ‎Based‎ ‎on‎ ‎Normal‎ ‎Mean--Variance Birnbaum-Saunders

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
‎The purpose of this paper is to extend the mixture factor analyzers (MFA) model \CG{to handle} missing and heavy-\CG{tailed} data‎. ‎In this model‎, ‎the distribution of factors loading and errors arise from the multivariate normal mean-variance mixture of‎ \CG{the} Birnbaum-Saunders (NMVBS) distribution‎. ‎By using the structures covariance matrix‎, ‎we introduce parsimonious MFA based on NMVBS distribution‎. ‎An Expectation Maximization (EM)-type algorithm is developed for parameter estimation‎. ‎Simulations study and real data sets represent the efficiency and performance of the proposed model‎.
Language:
English
Published:
Mathematics Interdisciplinary Research, Volume:9 Issue: 4, Autumn 2024
Pages:
385 to 411
https://www.magiran.com/p2793952  
سامانه نویسندگان
  • Askari، Jalal
    Corresponding Author (2)
    Askari, Jalal
    Assistant Professor Mathematics, University of Kashan, Kashan, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.