Design and Implementation of a Two-Level Supervisory Fuzzy-PID Controller for Microjet Engine

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:

A detailed modeling of the thermodynamic behavior of the gas turbine engine has been developed in this study. The modeling encompasses volume dynamics, shaft dynamics, Mach number and altitude variation. To achieve maintaining of engine in desired operational range, a two-level hybrid fuzzy-PID controller has been designed for controlling a turbojet engine in a software environment. The effectiveness of this design approach has been investigated, considering all nonlinear thermodynamic behaviors and variations in Mach/altitude. The controller effectively manages these factors and have desire response. Furthermore, a protection loop has been implemented to safeguard against sudden engine shutdown, sharp temperature increases, and surge using the Min-Max strategy coupled with a controller. This approach ensures a safe response of the controller to the engine and prevents damage to the engine. The model possesses the capability to simulate the engine's performance in both transient and steady-state conditions. The validation of the thermodynamic model has been carried out using the GasTurb 13 software to ensure acceptable simulation results. The maximum error was 7% in thrust level. The simulation results indicate the capability of the hybrid two-level controller in various flight scenarios, resulting in an average 18.6% shorter settling time, 34.3% shorter rise time, and no permanent error compared to PID control.

Language:
English
Published:
Journal of Applied Dynamic Systems and Control, Volume:7 Issue: 3, Summer 2024
Pages:
1 to 12
https://www.magiran.com/p2806348