Nonlinear Coupled Thermoelasticity of Cylindrical Shells Resting on Elastic Foundation
Kinematically nonlinear coupled thermoelasticity of the FGM cylindrical shell resting on elastic foundations is investigated under heat shock. The energy and equations of motion are solved simultaneously as a system of equations for an FG cylindrical shell. It is assumed that the shell is resting on the nonlinear Winkler elastic foundation. The classical theory of coupled thermoelasticity along with the first order shear deformation shell theory are used to solve the problem. The finite element method is employed to numerically solve the problem in the space domain and the Newmark method in time domain. Temperature distribution across the shell thickness is considered to be linear. The radial displacement distributions for different values of the power law index and the Winkler coefficients are plotted in terms of time.