فهرست مطالب

Automotive Science and Engineering
Volume:11 Issue: 1, Winter 2021

  • تاریخ انتشار: 1399/12/11
  • تعداد عناوین: 7
|
  • Hossein Gharaei, Pouria Ahmadi*, Pedram Hanafizade Pages 3457-3471

    This paper introduces a novel powertrain system composed of a liquid ammonia internal combustion engine, a dissociation and separation unit, and a PEM fuel cell system developed for vehicular applications. Using a carbon-free fuel for the ICE and producing hydrogen on board for PEMFC use significantly enhance this novel systemchr('39')s environmental effects. The thermodynamic analyses are conducted using EES and MATLAB software. The results show that while this hybrid powertrain system produces 120 kW output power, energy and exergy efficiencies are 45.2% and 43.1%, respectively. The overall exergy destruction rate of the system becomes 237.4 kW.The fuel consumption, engine speed, and battery state of charge (SoC) analyses are calculated using three driving cycles. These vehicles consume 7.9, 5.7, and 7.7 liters of liquid ammonia per 100 km in FTP-75, NEDC, and HWFET driving cycles, respectively. The battery state of charge differentiation in these three cycles shows the practicality of this novel powertrain system specially in inner-city driving cycles as the battery does not confront any intense decline of SOC to the minimum level. HWFET results show the great dependence of the vehicle on ICE and low PEM fuel cell function, which results in releasing decomposed hydrogen to the environment.

    Keywords: Hybrid powertrain system, PEM fuel-cell, Liquid ammonia ICE, Fuel consumption, Standard driving cycle
  • Behzad Samani*, Amir Hossein Shamekhi Pages 3472-3484

    In this paper, an adaptive cruise control system is designed that is controlled by a neural network model. This neural network model is trained with data resulting from the simulation of a multi-objective nonlinear predictive adaptive cruise control system. For this purpose, first, an adaptive cruise control system was designed using the concept of model predictive control based on a nonlinear model to maintain the desired speed of the driver, maintain a safe distance with the car in front, reducing fuel consumption and increasing ride comfort. Due to the time-consuming computations in predictive control systems and the consequent need for powerful and expensive hardware, it was decided to use the extracted data from the simulation of this designed cruise control system to train a neural network model and use this model to achieve control objectives instead of the predictive controller. Using the neural network model in the cruise control system, despite a significant reduction in computation time, the control objectives were well achieved, and in fact a combination of model predictive controller accuracy and neural network controller speed was used.

    Keywords: Adaptive Cruise Control, Model Predictive Control, Artificial Neural Networks, Fuel Consumption, Comfort
  • Hadiseh Karimaei*, Hamidreza Chamani Pages 3485-3493

    Erosive wear damage is common damage in the bearing shell of engines which causes a change in bearing profile and affects the oil film pressure and durability of bearing shell. The objective of the present paper is to present an appropriate algorithm for prediction and failure analysis of wear in BE bearing of engines using the Elasto-HydroDynamic (EHD) model. The mentioned model incorporating a mass-conserving algorithm is utilized to compute the lubrication characteristics of bearing, such as minimum oil film thickness and maximum oil film pressure. In EHD analysis, bearing housing is modeled by the finite element method to consider the bearing deformation. To estimate the wear volume, a code was written in MATLABÒ software which modifies the bearing profile and surface roughness during the analysis. A modified Archard model is used to model the lubricated sliding wear of rough contacting surface. Change in bearing surface roughness due to wear is modeled by the Abbot curve. Finally wear damage progression of BE bearing during engine operation is calculated and the results are thoroughly discussed. The numerical simulation results confirm that the wear rate at the initial stage of engine running is significant. It is concluded that wear adapts the bearing geometry in proper condition and improves the contact problem at the edges of bearing.

    Keywords: Wear damage, Big eye (BE) bearing, Elasto-HydroDynamic (EHD), Modified Archard model
  • Ali Mirmohammadi*, Mehdi Rezaei-Ravari Pages 3494-3503

    In this article, the procedure of series hybridizing is fulfilled on the O457 city bus that is produced in Irankhodro Diesel Company. For simulation validation the bus with base diesel engine is simulated in European and Tehran compound urban–highway driving cycle and fuel consumption results compared. First the ECE_EUDC_LOW driving cycle  simulation results compared with the results of the advisor software that was some difference between two software results. For deep validation bus with base engine was simulated in Tehran driving cycle and fuel consumption calculated 53.26 Lit/100Km that was near actual value that is 59.48 Lit/100Km. After verification, a bus with series hybrid electric-diesel powertrain was designed and simulated in the European and Tehran driving cycle. Simulation results and experimental data’s shown that the series hybrid electric-diesel bus fuel consumption reduction in ‌the ECE_EUDC_LOW driving cycle, is 30% and in Tehran driving cycle is 39% less in comparison to base power train that is base diesel engine.

    Keywords: Driving Cycle, Urban-highway, Series hybrid bus, Simulation, GT-Drive
  • Sohrab Pakdelbonab*, Afshin Kazerooni, Gholamhassan Payganeh, Mohsen Esfahanian Pages 3504-3513

    Global restrictions on the use of fossil fuels in the transportation sector and the commitment to rapid response to the climate change have created a strong incentive to develop fuel-efficient and low-emission vehicle systems. Hydraulic hybrid power train technology is one of the temporary solutions introduced to optimize internal combustion engine (ICE) operation and regenerate braking energy. The hydraulic hybrid power train system (HHPS) has a higher power density than the electric one. So, it is used in heavy vehicles, agricultural and construction machinery that need a high-power density to accelerate or recover the braking energy.  In some trucks, such as refuses collection trucks, fire trucks and delivery trucks, a high percentage of the ICE energy is consumed by the auxiliary systems. In this type of trucks, the hydraulic hybrid power train systems are not very efficient. This paper introduces a hydraulic hybrid auxiliary system (HHAS) concept to manage the energy consumed by the auxiliary system in refuse collection trucks. In the first part of the paper, the configurations and operating modes of series, parallel and hydro-mechanical HHPS are discussed and compared with the HHAS concept. In the following, the conventional refuse collection truck model and refuse truck equipped with HHAS model was developed in MATLAB/SINMULINK and simulated in Tehran refuse collection truck driving cycle. The simulation results show that by using the ​​HHAS concept, the fuel consumption is reduced by 15 percent.

    Keywords: Auxiliary system, Hydraulic hybrid vehicle, Power train, Refuse collection truck
  • Mostafa Pahlavani, Javad Marzbanrad* Pages 3514-3533

    In the present work, the energy absorption study of warm-rolled LZ71 sheet is done for the first time. To do so, Lithium (7% Wt), Zinc (1% Wt) and Magnesium are cast in 770⁰C. After that, the billet has been warm-rolled at 350⁰C and its thickness reduced by 80%. Then, two different heat treatment situations are studied to reach an isotropic plate. Afterward, microstructures of the specimens have been studied using an optical microscope. Tensile tests of the samples are derived to study the mechanical properties and isotropy of the sheets. Moreover, the results of tensile tests applied for crushing simulations. Energy absorption study of the alloy is also done using ABAQUS/Explicit commercial code. The results of simulations are validated using experimental tests of A6082 and completely acceptable performance of simulations is observed. Then, the mechanical properties of LZ71 are used to study the crashworthiness behavior of the mentioned alloy. Crash absorption parameters, namely peak crush force (FMax), mean crush force (FMean), Total Energy Absorption (TAE), Crush Force Efficiency (CFE), Specific Energy Absorption (SEA) and Total Efficiency (TE) of LZ71 and A6082 are compared which are shown that the performance of LZ71 is considerably more efficient than A6082. Lastly, by the help of Artificial Neural Network (ANN) and Taguchi Method, the effects of dimensional parameters of tube, namely diameter, length and thickness, on FMax, FMean and TAE and also the influences of dimensionless geometrical ratios, namely L/D and D/t on CFE, SEA and TE are surveyed comprehensively.

    Keywords: Crashworthiness, Warm rolling, LZ71, Magnesium Alloy, Crash simulation, Crash energy absorption, Artificial Neural Network
  • Sadjad Pirmohammad*, Sobhan Esmaeili Marzdashti, Elnaz Vosoghifard Pages 3534-3546

    Thin-walled columns are frequently employed in vehicle structures to diminish the damages resulting from vehicle collisions. In this research, the effect of hole shapes and dimensions on crushing behavior of octagonal multi-cell columns subjected to longitudinal loading is studied. Rectangular, hexagonal and elliptical holes are assumed on the octagonal multi-cell columns, and crushing parameters (i.e. specific energy absorption SEA and maximum crushing force Fmax) are then obtained by performing numerical analyses in LS-DYNA. The results demonstrate that creation of holes on column walls improve crushing capability significantly, such that creation of rectangular, hexagonal and elliptical holes on the octagonal multi-cell columns increases the value of SEA by 37%, 42% and 39%, respectively in comparison to the plain octagonal column. On the other hand, presence of holes on the octagonal columns results in reduction of Fmax (as a negative crushing indicator).

    Keywords: Thin-walled columns, Crushing capability, Hole shape, Octagonal multi-cell column