فهرست مطالب

Automotive Science and Engineering
Volume:4 Issue: 1, Winter 2014

  • تاریخ انتشار: 1392/12/10
  • تعداد عناوین: 7
|
  • A. Elfasakhany Pages 608-620

    The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), E7 (7% ethanol + 93% unleaded gasoline) and E10 (10% ethanol + 90% unleaded gasoline). Results of the engine test indicated that using ethanol–gasoline blended fuels improve output torque, power, volumetric efficiency and fuel consumption of the engine it was also noted that fuel consumption depends on the engine speed rather than the ethanol content for ethanol less than 10% blended ratio. CO and unburned hydrocarbons emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition CO2 emission increases because of the improved combustion.

    Keywords: Ethanol, Gasoline, Blends, Engine performance, Pollutant emission
  • M.H. Shojaeefard *, V. Kh. Mousapour, M. Sh. Mazidi Pages 621-628

    Thermal Contact Conductance (TCC) between an exhaust valve and its seat is one of the important parameters to be estimated in an internal combustion engine. An experimental study presented here to acquire temperature in some interior points to be used as inputs to an inverse analysis. An actual exhaust valve and its seat are utilized in a designed and constructed setup. Conjugate Gradient Method (CGM) with adjoin problem for function estimation is used for estimation of TCC. The method converges very rapidly and is not so sensitive to the measurement errors. Contact frequency is one the factors which have a significant influence on TCC. The results obtained from current inverse method as well as those obtained from linear extrapolation method show that the thermal contact conductance decreases as the contact frequency increases. The results obtained from both sets of results are also in good agreement.

    Keywords: Thermal contact conductance, conjugates gradient method, contact frequency, exhaust valve, seat
  • H.Golbakhshi, M.Namjoo *, M.Mohammadi Pages 629-637

    The dissipated energy from periodic deformation is regarded as the main reason for heat generation and temperature rise inside the tire domain. However, the mechanical behavior of rubber parts is highly temperature dependent. In most performed investigations, the influence of thermal effects on stress/ deformation fields of pneumatic tires is ignored and just temperature distribution is considered. Hence in this study, using a series of 2D and 3D finite element models, a robust and efficient numerical study is presented for thermo-mechanical analysis of pneumatic tires specially 115/60R13 radial tire. Finally, the effects of loading condition s and ambient temperature on the thermo-mechanical properties of tire are investigated in detail. Comparing the obtained results with the available results in literature, shows a good agreement of the presented studies with related published works.

    Keywords: Pneumatic tire, Thermal analysis, FEM analysis, Stress -deformation field
  • M. Mokhtari *, K. Farhadi Pages 638-645

    Automobile light weight structural composites are subjected to the various loadings in their service lives. Honeycombs are increasingly used as core structures in automobile light weight structures as energy absorbers. In this paper the energy absorption of honeycomb panels under impact of cylindrical projectile is numerically and experimentally studied. The effect of the core materials and cross-ply or semi-isotropic lamination of face-sheets are checked numerically. Results shown that the aluminum cores vs. Nomex cores and semi-isotropic lamination of face-sheets have much better energy absorption aspects in impact loading.

    Keywords: Sandwich composites, Impact, Numerical- Experimental
  • A.Ghasemian, A.Kesharaz, H.Sotoudeh Pages 646-653

    The subjects of heat transfer and cooling system are very important topics in the Internal Combustion Engines (ICE). In modern cooling systems, low weight, small size and high compactness are the critical designing criteria that requires heat transfer enhancement. Boiling phenomenon which is occurred in the water jacket of the ICE is one of the methods to increase heat transfer in the coolant system of an ICE. A research has been shown that parameters such as material, temperature, and roughness of the heated surface have direct effect on the rate of heat transfer in a boiling phenomenon. In this paper the potential of boiling phenomenon and the effect of the surface roughness on the amount of heat flux removed by the coolant flow in the engine water jacket is investigated experimentally. For this purpose the experiments was carried out in three different flow velocities and also three different surface roughnesses. Results show that the boiling and roughness of a hot surface will increase the heat removal significantly.

    Keywords: Internal Combustion Engine, heat transfer, flow boiling, roughness
  • E. Honarvar Gheysari *, A. Babakhani, A. Haerian Pages 654-663

    Shot peening applies a residual compressive stress field (RCSF) on the surface of parts. It also shifts “crack nucleation sites” to sub-surface locations. A nondestructive method of measuring the stresses, Sin2ψ was utilized here and the stress values introduced to Ansys software. For this purpose, uniform stress in all directions was applied on the con rod. Loading on the rod in Ansys had three steps: RCSF caused by shot peening (measured by XRD), and tensile and compressive stresses caused by inertial and gas forces, respectively (calculated). Fatigue Macro of Ansys was resumed carrying out the cyclic loading and thereby, improvement of powder forged connecting rods' fatigue life, caused by shot peening was obtained.

    Keywords: Fatigue Life, Shot peening, X-ray Diffraction, Ansys
  • A. Khalkhali, M. Afroosheh, M. R. Seyedi Pages 664-674

    In this paper, numerical simulation of FRP composite cylinder tubes progressive crushing processes is conducted using LS-Dyna. Details on the numerical modeling strategy are given and discussed. It is found that triggers introduced in the numerical simulation can effectively model the bevel trigger at the end of the tubular specimens. It is also found that two-layer finite element model based on the TsaiWu failure criteria is effective in representing the crushing failure mode of the tubular composite specimens and energy absorption characteristics. Employing GEvoM software, two meta-models are then obtained for modeling of both the absorbed energy (E) and the peak crushing force (Fmax) with respect to geometrical design variables using input output data obtained from the finite element modeling. Comparison between obtained meta-models and numerical results in both of training and testing sets show good approximation by using obtained polynomial models.

    Keywords: Composite cylinder tubes, Finite element analysis, Crushing behavior, GEvoM, LS-DYNA