فهرست مطالب

Automotive Science and Engineering
Volume:3 Issue: 3, Summer 2013

  • تاریخ انتشار: 1392/06/10
  • تعداد عناوین: 7
|
  • M. Baghaeian*, A. Akbari Pages 457-473

    In this paper, the enhancement of vehicle stability and handling is investigated by control of the active geometry suspension system (AGS). This system could be changed through control of suspension mounting point’s position in the perpendicular direction to wishbone therefore the dynamic is alternative and characteristics need to change. For this purpose, suitable controller needs to change mounting point’s position in limit area. Adaptive fuzzy control able to adjust stability and handling characteristics in all conditions. Also, simple controller such as proportional-integral-derivative (PID) versus adaptive fuzzy have been used that submit intelligent controllers. The three of freedom model (3DOF) in vehicle handling is validated with MATLAB and CarSim software. The results show that the steady state response of the adaptive fuzzy controller has been closed to desired yaw and roll angle has been enhanced about %20. In cases of lateral velocity and side slip angle have the same condition that it shows the stability has been improved. The control effort of PID needs to change very high that this response is not good physically, while control effort in adaptive fuzzy is less than 50 mm.

    Keywords: Active geometry suspension system, stability, handling, adaptive fuzzy control
  • H. Shojaeefard*, M.Tahani, M. Etghani, M.Akbari Pages 474-481

    Cooled exhaust gas recirculation is emerging as a promising technology to address the increasing demand for fuel economy without compromising performance in turbocharged spark injection engines. The objectives of this study are to quantify the increase in knock resistance and to decrease the enrichment and emission at high load. For this purpose four stroke turbo charged Spark Ignition engine (EF7-TC) including its different systems such as inlet and exhaust manifold, exhaust pipe and engine geometry are modeled using GT Power Software. As predicted, using cooled EGR at high load enabled operation at lambda near to one with the same serial engine performances, which offers substantial advantages Such As BSFC reduction (up to 14%), and emission reduction (CO, NOx).

    Keywords: Knock, emission, fuel consumption, GT power
  • M. Bostanian*, M. Barakati, B.Najjari, D.Mohebi Kalhori Pages 482-495

    Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy is employed to control the powertrain. Genetic-Fuzzy algorithm is a method in which parameters of a Fuzzy Logic Controller (FLC) are tuned by Genetic algorithm. The main target of control is to minimize two competing objectives, consisting of energy cost and emissions, simultaneously. In addition, a new method to consider variations of Battery State of Charge (SOC) in the optimization algorithm is proposed. The controller performances are verified over Urban Dinamometer Driving Cycle (UDDS) and New Europian Driving Cycle (NEDC). The results demonstrate the effectiveness of the proposed method in reducing energy cost and emissions without sacrificing vehicle performance.

    Keywords: Hybrid electric vehicle, Genetic algorithm, Fuzzy logic controller, Energy cost
  • R. Noorpoor* Pages 496-507

    Oil pump in diesel engine has significant effect on energy consumption and environment pollution. In this paper, the modeling and simulation of a gear oil pump used in a diesel engine and its fluid flow analysis by a solver has been explained. Also the optimization and redesign of it has been discussed and then the outcomes have been compared with the experimental and previous results. The type of this oil pump is external gear pump with involute tooth profile, so we need to use the gears with the minimum number of tooth to optimize the pump performance and getting the optimum displacement volume rate of it. While the engaged gears of the pump rotating together, the intersection between them changes in time. So their boundaries should be considered as movable. The strategy used here consist in using dynamic meshes, dividing a tooth rotating cycle into a certain number of time steps and investigating the flow and getting the results for each time steps.

    Keywords: external gear oil pump, fluid flow, moving boundary, Dynamic mesh, involute profile
  • Jafari, Sh. Azadi, M.Samadian, * Pages 508-522

    The directional response and roll stability characteristics of a partly filled tractor semi-trailer vehicle, with cylindrical tank, are investigated in various maneuvers. The dynamic interaction of liquid cargo with the tractor semi-trailer vehicle is also evaluated by integrating a dynamic slosh model of the partly filled tank with five-degrees-of-freedom of a tractor semi-trailer tank model. The dynamic fluid slosh within the tank is modeled using three-dimensional Navier-Stokes equations, coupled with volume-of-fluid equations and analysed using the FLUENT software. The coupled tank-vehicle model is subsequently analysed to determine the roll stability characteristics for different maneuvers. The results showed the interaction of fluid slosh with vehicle's dynamic. Another findings of this investigation also revealed that the roll stability of a tractor semi-trailer tank carrying liquid was highly affected by fluid sloshing and caused degradation of roll stability in comparison with vehicle carrying rigid cargo.

    Keywords: Liquid sloshing, tractor semi-trailer, vehicle dynamics, volume of fluid method (VOF), two phase flow
  • A. Mirmohammadi*, F. Ommi Pages 523-530

    The purpose of present paper is simulation a direct injection stratified charge natural gas engine. The KIVA-3V code was used for gaseous fuel injection simulation. Compression and expansion stroke of engine cycle is simulated using KIVA-3V code. In cylinder fuel equivalence ratio distribution criterion is used for studying mesh independency. The results show that 550000 cells number is sufficient. The amount of NO emission in the end of closed cycle simulation was found equal 674.875 ppm and In cylinder pressure versus engine crank angle degree was simulated that maximum value found in 366 oCA that equal to 27.3222 bar.

    Keywords: Simulation, Engine, Natural Gas, Direct Injection, Stratified Charge
  • B. Soleimani*, M. Jalili Pages 531-540

    Wheel/rail contact simulation is one of the most complicated problems in the modeling of railway vehicles. The wheel/rail interaction plays a unique role in rail vehicle dynamics. In this paper, the dynamic response of the wheel on irregular rail track is analyzed with analytical approach using the method of Multiple Scales (MMS). The Hertzian contact theory is used to obtain the relationship between normal contact force and the displacement of the mass center of the wheel. Analytical approach is expanded for performance of train’s wheel travelling on the rail. To validate the method presented in this paper, responses of the model using MMS method are compared with the results obtained from the Runge–Kutta numerical solution. Finally effects of the wheelset preload on response frequency have been studied.

    Keywords: Wheel-rail contact, Hertz elastic contact, Method of Multiple Scales, Runge–Kutta method