به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

h. r. matinfar

  • H.R. Matinfar *, N. Kianain, S. Ahmadi

    Soil salinity and alkalinity are among the most important soil degradation processes, especially in arid and semi-arid regions. The purpose of this study is to evaluate spectral indicators as well as use the data of the EM38 for identifying saline soils and spatial changes. The study area is Ghahavand plain that is located in Hamedan Province. In this study, Landsat 8 satellite data were used. Soil sampling of 37 points was performed and 86 points were read using an electromagnetic induction device. Using protomorphic units based on visual interpretation of OLI 543 false-color composite image and field observations, a total of 9 homogeneous units were identified in the region using these units as training regions for supervised classification. The results showed that the detection of soil salinity in the visible spectrum (blue, green, and red band) is feasible. The bands 5, 6, and 7 can be useful in differentiating salty white crust lands from salty gray crust lands. In the reflective bands, the white and smooth crust exhibits the highest reflectance. The results of classification accuracy showed that the highest total accuracy was 90.0 and the kappa coefficient was 80.45 when bands 1, 2, 3, 4, 5, 6, 7, 10, and 11 were used and shallow and abandoned plowed lands had the least accuracy. Also, the final model of salinity estimation showed that SI6 and SI11 indicators and electromagnetic induction vertical measurements (EMv) are the most suitable variables for estimating salinity spatial changes.

    Keywords: Soil Salinity, Landsat 8, spectral indices, magnetic induction
  • حمیدرضا متین فر*، محبوبه جلالی، زهرا دیبایی

    شناخت توزیع مکانی کربن آلی خاک یکی از ابزارهای کاربردی در پیشبرد مدیریت پایدار اراضی و محیط زیست می باشد. داده کاوی و مدل سازی مکانی همراه با تکنیک های یادگیری ماشینی به منظور بررسی میزان کربن آلی خاک مبتنی بر داده های سنجش از دور به صورت گسترده مورد توجه قرار گرفته است. هدف از این مطالعه،استفاده از تصاویر با دامنه طیفی مریی تا مادون قرمز حرارتی و داده های زمینی برای مدل سازی میزان کربن آلی خاک می باشد. با استفاده از الگوی نمونه برداری تصادفی156نمونه از خاک سطحی (30-0 سانتی متر) جمع آوری شد. داده ها به دو دسته 80 درصد برای آموزش و 20 درصد جهت اعتبارسنجی دسته بندی شدند و از سه الگوریتم یادگیری ماشین شامل جنگل تصادفی، کوبیست و رگرسیون حداقل مربعات جزیی برای براورد و تهیه نقشه کربن آلی خاک استفاده شد. متغیرهای کمکی جهت پیش بینی کربن آلی خاک شامل باندها و شاخص های منتج از سنجنده ی OLI و TIRS لندست 8 می باشد. به منظور کاهش حجم داده ها و انتخاب ویژگی هایی با بیشترین تاثیر بر براورد کربن آلی خاک، از روش آنالیز مولفه های اصلی استفاده شد. آنالیز مولفه های اصلی داده های سنجش از دور منجر به گزینش 4 متغیر کمکی TSAVI، RVI، Band10 و Band11 به عنوان موثرترین عوامل کمکی محیطی انتخاب گردیدند. همچنین مقایسه رویکردهای مختلف تخمین نشان داد که مدل جنگل تصادفی به ترتیب با مقادیر ضریب تبیین، خطای جذر میانگین مربعات و میانگین مربعات خطا 74/0، 17/0 و 02/0 بهترین کارایی را نسبت به سایر رویکردهای مورد استفاده در برآورد کربن آلی خاک سطحی در منطقه مطالعاتی ارایه نمود. به طور کلی نتایج این مطالعه بر قابلیت دادهای سنجش از دور و مدل یادگیری جنگل تصادفی در تخمین مکانی کربن آلی خاک به طور همزمان دلالت دارد. لذا می تواند به عنوان روشی جایگزین برای روش های مرسوم آزمایشگاهی در تعیین برخی ویژگی های خاک از جمله کربن آلی خاک مورد توجه قرار گیرد.

    کلید واژگان: توزیع مکانی، طیف مرئی مادون قرمز، کربن آلی خاک، مدل سازی، سنجنده لندست 8
    H.R. Matinfar *, M. Jalali, Z. Dibaei
    Introduction

    Understanding the spatial distribution of soil organic carbon (SOC) is one of the practical tools in determining sustainable land management strategies. Over the past two decades, the use of data mining approaches in spatial modeling of soil organic carbon using machine learning techniques to investigate the amount of carbon to soil using remote sensing data has been widely considered. Accordingly, the aim of this study was to investigate the feasibility of estimating soil organic matter using satellite imagery and to assess the ability of spectral and terrestrial data to model the amount of soil organic matter.

    Materials and Methods

    The study area is located in Lorestan province, and Sarab Changai area. This area has hot and dry summers and cold and wet winters and the wet season starts in November and ends in May. A total of 156 samples of surface soil (0-30 cm) were collected using random sampling pattern. Data were categorized into two categories: 80% (117 points) for training and 20% (29 points) for validation. Three machine learning algorithms including Random Forest (RF), Cubist, and Partial least squares regression (PLSR) were used to prepare the organic soil carbon map. In the present study, auxiliary variables for predicting SOC included bands related to Lands 8 OLI measurement images, and in order to reduce the volume of data, the principle component analysis method (PCA) was used to select the features that have the greatest impact on quality.

    Results and Discussion

    The results of descriptive statistics showed that soil organic carbon from 0.02 to 2.34% with an average of 0.56 and a coefficient of variation of 69.64% according to the Wilding standard was located in a high variability class (0.35). According to the average amount of soil organic carbon, it can be said that the amount of soil organic carbon in the region is low. At the same time, the high value of organic carbon change coefficient confirms its high spatial variability in the study area. These drastic changes can be attributed to land use change, land management, and other environmental elements in the study area. In other words, the low level of soil organic carbon can be attributed to the collection of plant debris and their non-return to the soil. Another factor in reducing the amount of organic carbon is land use change, which mainly has a negative impact on soil quality and yield. In general, land use, tillage operations, intensity and frequency of cultivation, plowing, fertilizing, type of crop, are effective in reducing and increasing the amount of soil organic carbon. Based on the analysis of effective auxiliary variables in predicting soil organic carbon, based on the principle component analysis for remote sensing data, it led to the selection of 4 auxiliary variables TSAVI, RVI, Band10, and Band11 as the most effective environmental factors. Comparison of different estimation approaches showed that the random forest model with the values of coefficient of determination (R2), root mean square error (RMSE) and mean square error (MSE) of 0.74, 0.17, and 0.02, respectively, was the best performance ratio another study used to estimate the organic carbon content of surface soil in the study area.

    Conclusion

    In this study, considering the importance of soil organic carbon, the efficiency of three different digital mapping models to prepare soil organic carbon map in Khorramabad plain soils was evaluated. The results showed that auxiliary variables such as TSAVI, RVI, Band 10, and Band11 are the most important variables in estimating soil organic carbon in this area. The wide range of soil organic carbon changes can be affected by land use and farmers' managerial behaviors. Also, the results indicated that different models had different accuracy in estimating soil organic carbon and the random forest model was superior to the other models. On the other hand, it can be said that the use of remote sensing and satellite imagery can overcome the limitations of traditional methods and be used as a suitable alternative to study carbon to soil changes with the possibility of displaying results at different time and space scales. Due to the determination of soil organic carbon content and their spatial distribution throughout the region, the present results can be a scientific basis as well as a suitable database and data for the implementation of any field operations, management of agricultural inputs, and any study in sustainable agriculture with soil properties in this area. In general, the results of this study indicated the ability of remote sensing techniques and random forest learning model in simultaneous estimation of soil organic carbon location. Therefore, this method can be used as an alternative to conventional laboratory methods in determining some soil characteristics, including organic carbon.

    Keywords: Modeling, Remote sensing, Soil organic carbon, spatial distribution
  • حمید رضا متین فر*، زیبا مقصودی، روح الله موسوی، محبوبه جلالی

    شناخت توزیع مکانی کربن آلی خاک یکی از ابزارهای کاربردی در تعیین استراتژی های مدیریت پایدار اراضی است. طی دو دهه اخیر استفاده از رویکردهای داده کاوی در مدل سازی مکانی کربن آلی خاک با استفاده از تکنیک های یادگیری ماشین به طور گسترده ای مورد توجه قرار گرفته است. یکی از گام های اساسی در کاربرد این روش ها، تعیین متغیرهای بهینه پیش بینی کننده کربن آلی خاک است. این مطالعه به منظور مدل سازی و نقشه برداری رقومی کربن آلی خاک سطحی با استفاده از روش های یادگیری ماشین و ویژگی های خاک شامل درصد سیلت، رس، شن، کربنات کلسیم معادل، میانگین وزنی قطر خاکدانه و اسیدیته انجام پذیرفت. بدین منظور دقت عملکرد مدل های جنگل تصادفی، کوبیست، رگرسیون حداقل مربعات جزیی، رگرسیون خطی چندمتغیره و کریجینگ معمولی برای برآورد میزان کربن آلی خاک سطحی، در 141 نمونه از عمق 30-0 سانتی متر در بخشی از اراضی کشاورزی دشت خرم آباد با مساحت 680 هکتار مورد ارزیابی قرار گرفتند. نتایج آنالیز حساسیت متغیرهای پیش ران در مدل سازی کربن آلی نشان داد که به ترتیب سه ویژگی درصد سیلت، آهک و میانگین وزنی قطر خاکدانه بیشترین تاثیر را روی تغییرپذیری مکانی کربن آلی خاک داشتند. همچنین مقایسه رویکردهای مختلف تخمین کربن آلی نشان داد که مدل جنگل تصادفی به ترتیب با مقادیر ضریب تبیین (R2) و مجذور میانگین مربعات خطا (RMSE) 0/75 و 0/25 درصد بهترین کارایی را نسبت به سایر رویکردهای مورد استفاده در منطقه مطالعاتی ارایه کرد. در مجموع مدل های با رویکرد غیرخطی صحت بالاتری نسبت به مدل های خطی در مدل سازی تغییرات مکانی کربن آلی خاک نشان دادند.

    کلید واژگان: تغییرپذیری مکانی، نقشه برداری رقومی خاک، روش های مدل سازی، پیش بینی کربن آلی
    H. R. Matinfar*, Z. Mghsodi, S. R. Mossavi, M. Jalali

    Knowledge about the spatial distribution of soil organic carbon (SOC) is one of the practical tools in determining sustainable land management strategies. During the last two decades, the utilization of data mining approaches in spatial modeling of SOC using machine learning algorithms have been widely taken into consideration. The essential step in applying these methods is to determine the environmental predictors of SOC optimally. This research was carried out for modeling and digital mapping of surface SOC aided by soil properties ie., silt, clay, sand, calcium carbonate equivalent percentage, mean weight diameter (MWD) of aggregate, and pH by machine learning methods. In order to evaluate the accuracy of random forest (RF), cubist, partial least squares regression, multivariate linear regression, and ordinary kriging models for predicting surface SOC in 141 selected samples from 0-30 cm in 680 hectares of agricultural land in Khorramabad plain. The sensitivity analysis showed that silt (%), calcium carbonate equivalent, and MWD are the most important driving factors on spatial variability of SOC, respectively. Also, the comparison of different SOC prediction models, demonstrated that the RF model with a coefficient of determination (R2) and root mean square error (RMSE) of 0.75 and 0.25%, respectively, had the best performance rather than other models in the study area. Generally, nonlinear models rather than linear ones showed higher accuracy in modeling the spatial variability of SOC.

    Keywords: Spatial variability, Digital soil mapping, Modeling approaches, SOC prediction
  • الهام مهرابی گوهری، حمیدرضا متین فر*، روح الله تقی زاده مهرجردی، اعظم جعفری

    طیف سنجی مریی و مادون قرمز نزدیک (VIS-NIR) به طور گسترده ای برای تخمین خصوصیات فیزیکی خاک و اخیرا برآورد بافت خاک استفاده می شود. مطالعه حاضر با هدف پیش بینی احتمالی بافت خاک با استفاده از اندازه گیری های طیفی و مدل های شبکه عصبی مصنوعی و رگرسیون حداقل مربعات جزیی انجام گرفته است. بر اساس تکنیک هایپرکیوب، محل 115 پروفیل شناسایی و سپس نمونه برداری از افق های خاک انجام گرفت، درصد شن و رس و سیلت نمونه های خاک اندازه گیری شد. رگرسیون حداقل مربعات جزیی (PLSR) و شبکه عصبی مصنوعی (ANN) برای مدل سازی درصد رس، شن و سیلت خاک مقایسه شدند. نتایج این بررسی نشان داد که شبکه عصبی مصنوعی نسبت به رگرسیون حداقل مربعات جزیی کارایی بهتری داشت، برای هر دو مدل از محدوده خاصی از طول موج (بین 400 -2450 میکرون با اعمال پیش پردازش ها و حذفیات یکسان) استفاده گردید. هنگامی که مدل رگرسیون مربعات جزیی اجرا شد، دقت بسیار پایینی داشت (R2 ~0.1-0.3)، در مقابل، روش شبکه عصبی-مصنوعی مقدار R2 به ترتیب برای رس، شن و سیلت 70/0, 76/0و 73/0 بود و میانگین ریشه مربعات خطا به ترتیب 14/9، 54/5 و 01/7 گرم بر کیلوگرم براساس داده های آزمون (20 درصد) به دست آمد که نشان دهنده دقت بالاتر و خطای کمتر مدل شبکه عصبی-مصنوعی می باشد. از آنجایی که رابطه بین درصد ذرات خاک و بازتاب طیفی خاک خطی نیست، به نظر می رسد روش شبکه عصبی-مصنوعی برای بررسی و تجزیه و تحلیل رابطه بین اجزای بافت خاک و داده های طیفی مناسب باشد.

    کلید واژگان: رگرسون حداقل مربعات جزئی، پیش بینی، مدل سازی، طیف سنجی مرئی مادون قرمز، شبکه عصبی مصنوعی
    E. Mehrabi Gohari, H.R. Matinfar*, R. Taghizadeh Mehrjardi, A. Jafari
    Introduction

    Soil texture is the most important environmental variable because it plays a very important role in reducing the quality of land and water transfer processes, soil quality control and fertility. On the one hand, soil texture components are the basis of environmental predictive models and digital mapping of soil and on the other hand, soils are temporally and spatially variable, thus distinguish zoning and their monitoring with traditional sampling methods and laboratory analysis is very costly and time consuming. As a result, the development of methods for analyzing the soil and for required information has become very important. Visible and near infrared spectroscopy (VIS-NIR) is widely used to estimate soil physical properties and estimate soil texture. The present study aims to predict soil texture using spectral measurements and artificial neural network models and partial least squares regression.

    Materials and Methods

    The study area in southeastern Iran is approximately 70 km from Kerman. In the study area, based on the hypercube technique, 115 profiles were identified and then horizons were sampled. In this way, for each point of study, the necessary information, including the location of the profile on the ground, the type of geomorphic unit and the type of materiel, were recorded and taken from the horizons of each profile. In all soil samples, after drying and passing through 2 mm soil, the soil texture was measured by hypercube. Spectral radiometer was used to measure the spectral reflection of soil samples. The soil samples were air dried and sieved and then placed in a petri dish with an approximate diameter of 10 cm and transferred to the dark room for spectral analysis. Each specimen was tested four times (for each 90 degree sequential rotation) to remove the effects of a change in the radiation geometry. Soil samples were scanned, and absolute reflections at a spectral range of 2500-350 nm yielded 2150 spectral data points (SDPs) per soil sample with a spectral resolution of one nanometer. Finally, to construct a suitable model for forecasting the percentage of clay, sand, and silt, the least squares model was used with the number of factors 1 to 10 by Artificial Neural Network (ANN) modeling using JMP software Work.

    Results and Discussion

    The reflectance spectrum of the visible range - near infrared - was measured for specimens. Since preprocessing of spectral data has an effective role in improving the calibration, in order to perform spectral preprocessing, two first nodes of the first and the end of the spectra were first removed in the range of 350-400 and 2450-2500 nm. In addition, the interruption due to the change in the detector in the range of 900 to 1000 nm was also eliminated. Types of preprocessing methods were performed on spectral data. Then, using partial least squares regression analysis, the best model was produced when the first derivative was fitted to reflection values. The explanation coefficients for this low and unacceptable model were obtained. Therefore, using partial least squares regression analysis, the best wavelengths were selected to predict the percentage of clay, sand, soil, and extracted from the model. Then it was used as input in the neural network model. To determine the best combination, root error index and error coefficient were used. The results of artificial neural network showed that the number of neurons 9.8 and 10 had the best composition for predicting clay, sand and soil silt. The root-squared error results for clay, sand, and soil silt were 3.42, 6.94, and 4.383 respectively. Also, the results of the explanatory factor were 0.84, 0.83 and 0.81, respectively. After obtaining the optimal structure in the artificial neural network training phase described above, the trained network has been tested on the test data to determine the accuracy of this model to predict clay, sand and silt of surface soil. The root-squared error results for clay, sand and silt components were obtained at 5.54.9.14 and 7.01. Also, the results of the explanatory factor were 0.76.0.70 and 0.73 respectively. The best result of the prediction for partial least squares regression was obtained for the sand sample. The results indicate that the neural network performance is better than partial least squares regression, which is consistent with Mouazenet. al (2010) and also ViscarraRossel R. et. al (2009). Acceptable performance of the artificial-neural network can be attributed to the ability of this model for non-linear behavior of soil texture in visible spectroscopy. In this study, specific wavelengths, which Ben Finder et al. (2003) obtained in the study on the soils of Israel, were used. This conclusion confirms that various types of soil can be modeled using specific wavelengths. The advantage of this study is that, when using the artificial neural network, no pre-processing of reflection data is required before applying the model. Since the relationship between the percentage of soil particles (clay and gravel) and the reflection of the soil is not linear, the neural network method is very useful for analyzing the relationship between soils. Finally, the map of clay, sand and silt and map of soil texture was prepared by artificial neural network method in GIS environment.

    Conclusion

    The results of this study showed that the neural-dynamic network has a better performance than partial least squares regression. Calibration models designed and used in this study can be transported for use with other soils. When the partial least squares regression model was implemented, it had a very low accuracy (R2 ~ 0.1-0.3); on the contrary, the neural network-based method had high accuracy and less error. Note that although neural-dynamic modeling estimates higher precision results from soil texture, both approaches depend on wavelength selections, and so wavelengths should be selected before using any of the two models. To be finally, a meaningful relationship between the selected wavelengths and the percentage of clay, sand and silt in the present study indicates that soil texture is not only possible but also reliable by reflection spectroscopy.

    Keywords: Artificial neural network, Infrared, Modeling, Prediction, Partial least squares regression, Visible spectroscopy
  • H.R. Matinfar *, A. Fariabi, S.K. Alavipanah
    Soil salinity undergoes significant spatial and temporal variations; therefore, salinity mapping is difficult, expensive, and time consuming. However, researchers have mainly focused on arid soils (bare) and less attention has been paid to halophyte plants and their role as salinity indicators. Accordingly, this paper aimed to investigate the relationship between soil properties, such as electrical conductivity of the saturation extract (ECe) and the spectral reflectance of vegetation species and bare soil, to offer a method for providing salinity map using remote sensing. Various vegetation species and bare soil reflectance were measured. Spectral Response Index (SRI) for bare soil and soil with vegetation was measured via the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and salinity indexes. The electrical conductivity of the saturated extract, texture, and organic matter of soil samples were determined. The correlation coefficient of soil salinity with SRI, SAVI, and salinity indexes were obtained, and a model was presented for soil salinity prediction. EC map was estimated using the proposed model. The correlation between SRI and EC was higher than other models (0.97). The results showed that the salinity map obtained from the model had the highest compliance (0.96) with field findings. In general, in this area and similar areas, the SRI index is an acceptable indicator of salinity and soil salinity mapping.
    Keywords: spectral indices, Soil Salinity, SRI, Vegetation index
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال