lars algorithm
در نشریات گروه حسابداری-
پیش بینی ورشکستگی بنگاه های اقتصادی یکی از شاخه های رشته مالی است که در تحقیقات اخیر بیشتر مورد توجه قرار گرفته است به گونه ای که الگوهای ورشکستگی توسعه یافته است. در عمده پژوهش های صورت گرفته در حوزه پیش بینی عملکرد مالی شرکت ها و به طور خاص، ورشکستگی، تنها به پیش بینی و یا مقایسه توان پیش بینی مدل ها با استفاده از اطلاعات تاریخی صورت های مالی پرداخته شده است. از آنجا که در ایران بیشتر از اطلاعات تاریخی حسابداری استفاده شده است هدف اصلی این پژوهش لحاظ نمودن آثار تورم بر روی متغیرهای ورودی در طراحی مدل پیش بینی ورشکستگی می باشد. لذا متغیرها در دو گروه نسبت های مالی تعدیل شده و تاریخی، در طراحی دو مدل متفاوت دسته بندی شدند، سپس با استفاده از الگوریتم لارس نسبت های گویاتر تمایز بین شرکت های ورشکسته و غیرورشکسته، انتخاب گردیدند و در نهایت با به کارگیری آزمون رگرسیون لاجیت و الگوریتم های ماشین بردار پشتیبان و نیو بیزین مدل نهایی پیش بینی کننده ورشکستگی شکل گرفت. بدین منظور داده های 50 شرکت پذیرفته شده در بورس تهران براساس ماده 141 قانون تجارت برای حداقل یکسال ورشکستگی را تجربه کرده بودند، به کار گرفته شد. نتایج این پژوهش اثبات نمود که نسبت های مالی تعدیل شده بر مبنای شاخص قیمت ها پیش بینی کننده مناسب تری برای ورشکستگی شرکت ها می باشند همچنین، مدل طراحی شده توسط الگوریتم ماشین بردار پشتیبان با دقت 4/99% و برازش بالاتر نسبت به مدل های دیگر، پیش بینی کننده مناسبی برای ورشکستگی شرکت ها می باشد.
کلید واژگان: الگوریتم LARS، الگوریتم SVM، شاخص عمومی قیمت ها، نسبت مالی، ورشکستگیBankruptcy Prediction is one of the branches of finance that has received more attention in in recent research as bankruptcy patterns have been developed. In most of the researches in the field of Prediction the financial performance of companies and in particular, bankruptcy, only Predicting or comparing the predictive power of models using historical information of financial statements has been done. Since historical accounting information has been used more in Iran, the main purpose of this study is to consider the effects of inflation on input variables in designing a bankruptcy prediction model. Therefore, the variables in design of two different models were classified into two groups of financial ratios, adjusted and historical. Then, the ratios were identified using the LARS algorithm that had the highest ability to differentiate between bankrupt and non-bankrupt companies. Finally, the final bankruptcy prediction model was designed using the logit regression test and SVM and Naive Bayesian algorithms. For this purpose, the data of 50 companies listed on the Tehran Stock Exchange were used, which had experienced bankruptcy according to Article 141 of the Commercial Code. The results of this study indicate that the financial ratios adjusted based on the price index are more suitable predictor for corporate bankruptcy. Also, the bankruptcy prediction model designed by SVM algorithm can be a very good predictor for corporate bankruptcy with 99.4% accuracy.
Keywords: Bankruptcy, General Price Index, financial ratio, LARS Algorithm -
از آنجا که پیش بینی سود نقدی شرکت ها یکی از منابع اطلاعاتی با ارزش برای سرمایه گذاران و دیگر افراد ذینفع است، پژوهش حاضر تلاش می کند مدل هایی برای پیش بینی متغیرهای تاثیرگذار بر سود نقدی سهام پیشنهاد کند. برای این کار از اطلاعات شرکت های شیمیایی پذیرفته شده در بورس تهران بین سال های 1385 تا 1389 استفاده شده است. متغیرهای مستقل این تحقیق نسبت های حسابداری و متغیر وابسته سود نقدی سهام است. چارچوب مدل، ترکیبی از الگوریتم های PSO-SVR و PSO-LARS است. الگوریتم PSO، ترکیب بهینه ای از متغیرها که بر پیش بینی سود نقدی تاثیر گذارند را شناسایی می کند. سپس داده های مربوط به متغیرهای انتخاب شده توسط PSO به طور جداگانه به الگوریتم های SVR و LARS وارد می شوند و این الگوریتم ها را آموزش می دهند. در ادامه الگوریتم های SVR و LARS با داده های ارزیابی آزموده می شوند و به این ترتیب می توان خطای پیش بینی را اندازه گیری و روش ها را با هم مقایسه کرد. نتایج این پژوهش نشان می دهد ترکیب الگوریتم PSO با الگوریتم SVR یا ترکیب PSO-LARS در مقایسه با استفاده از الگوریتم های LARS و SVR به تنهایی می تواند پیش بینی بهتری از عوامل تاثیرگذار مورد نظر داشته باشد. ضمن این که در مقایسه دو روش ترکیبی PSO-LARS و PSO-SVR، خطای پیش بینی PSO-SVR کمتر است.
کلید واژگان: الگوریتم PSO، الگوریتم LARS، الگوریتم SVR، انتخاب مولفه، سود سهامSince one of the most important sources of information for investors and other beneficial is dividends forecast، this study tries to find models for predicting variables effective on dividend. To do this، information from chemical companies listed in Tehran Stock Exchange during the years 2006 to 2010 are used. The independent variables are accounting ratios and the dependent variable is dividend. The model framework is a combination of PSO-SVR and PSO-LARS algorithms. PSO algorithm identifies optimal combination of variables that influence the anticipated dividends. Then the data related to the variables selected by PSO are entered in to the SVR and LARS algorithms separately and train the algorithms. Then the algorithms are tested with evaluation data. Thus the prediction errors can be measured and the methods be compared. The research results show that combining PSO algorithm with LARS or SVR algorithm، as compared to using only SVR and LARS، can provide a better predict of considered affecting factors. Comparing the two combination methods، PSO-LARS and PSO-SVR، PSO-SVR shows that prediction error is less.Keywords: SVR algorithm, PSO algorithm, LARS algorithm, selecting factors, stock dividend
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.