به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

particle swarm algorithm

در نشریات گروه حسابداری
تکرار جستجوی کلیدواژه particle swarm algorithm در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه particle swarm algorithm در مقالات مجلات علمی
  • Alireza Azarberahman *
    The goal of the study is to estimate an artificial neural network (ANN) model for bankruptcy prediction and optimize processes using the Particle Swarm (PSO) and Genetic (GA) algorithms. 21 variables that were related to the likelihood of bankruptcy were chosen for the study. Neural networks (NNs) choose the optimal network with the least error in training and evaluating patterns in the second phase. The neural network's weights and biases were optimized in the final stage by combining GA and PSO with the neural network. The results showed that the ability to explain the initial pattern has risen using GA and PSO. The evaluation of ANN performance demonstrates the superiority of the models over linear regression. Finally, four variables—current ratio, sales to current assets ratio, economic value added, and gross profit margin ratio—that may reliably predict bankruptcy were found using the ANNs-PSO and ANNs-GA hybrid approach. The evidence reveals the effectiveness of the metaheuristic algorithms compared to linear ones in predicting bankruptcy. This further highlights the new breed of computational tools available to techno-savvy financial analysts and investors.
    Keywords: Artificial Neural Networks, Bankruptcy, Genetic Algorithm, Particle Swarm Algorithm
  • رحمان رحیمی، آیدا اکبری*
    انتخاب سبد سهام یکی از مباحث مهم در حوزه مدیریت سرمایه گذاری بوده که در رابطه با نحوه تخصیص سرمایه یک سرمایه گذار به دارایی های مختلف و تشکیل یک پرتفوی کارا بحث می کند که هرچه مفروضات و شرایط مدل سازی جهت انتخاب و بهینه سازی سبد سرمایه گذاری به شرایط دنیای واقعی نزدیکتر باشد، نتایج حاصل از آن بیشتر قابل اتکا خواهد بود. در نظر گرفتن افق تک دوره ای برای سرمایه گذاری چندان واقعی نبوده و بیشتر سرمایه گذاران برای بیش از یک دوره اقدام به سرمایه گذاری می کنند که سرمایه گذار بتواند موقعیت خود را در طول زمان مورد بازنگری قرار دهد. الگو ها و روش های مختلفی از زمان ارایه کار اولیه مار کویتز تا کنون برای انتخاب سبد سرمایه گذاری بهینه ارایه شده است . با این حال یافتن مفید ترین الگو در انتخاب این سبد همواره دغدغه سرمایه گذاران بوده است. در این پژوهش تعدادی از الگوریتم های بهینه سازی سبد سهام مانند الگوریتم مورچگان ، الگوریتم ژنتیک، الگوریتم فرهنگی، الگوریتم ازدحام ذرات، الگوریتم کرم شب تاب، آورده شده است که در مورد هر کدام به صورت مختصر توضیح داده شده است.
    کلید واژگان: الگوریتم ژنتیک، بهینه سازی، الگوریتم ازدحام ذرات، الگوریتم کرم شب تاب، الگوریتم مورچگان
    Rahman Rahimi, Ayda Akbari *
    Choosing a stock portfolio is one of the important topics in the field of investment management, which discusses how to allocate an investor's capital to different assets and form an efficient portfolio, which depends on the assumptions and modeling conditions for selecting and optimizing the investment portfolio. It is closer to real world conditions, the results will be more reliable. Considering a single period horizon for investment is not very realistic and most investors invest for more than one period so that the investor can review his position over time .Various patterns and methods have been presented since Markowitz's initial work to choose the optimal investment portfolio. However, finding the most useful pattern in choosing this portfolio has always been a concern of investors. In this research, a number of stock portfolio optimization algorithms such as ant algorithm, genetic algorithm, cultural algorithm, particle swarm algorithm, and firefly algorithm are given. Which is briefly explained about each.
    Keywords: Genetic Algorithm, optimization, Particle Swarm Algorithm, Firefly Algorithm, Ant algorithm
  • Eskandar Vaziri *, Farhad Dehdar, Mohammad Reza Abdoli
    The aim of this study was to evaluate the integrated risk of the banking system through the meta-heuristic algorithms of gray wolf, genetics and particle swarming. This research is applied research in terms of purpose and correlational in nature and method. Data collection has been done through library studies, articles and sites in deductive form and data collection to refute and confirm hypotheses inductively. The statistical population of this research is the banking system and the sample includes banks listed on the Tehran Stock Exchange during the fiscal years 1392 to 1397. In order to collect the required data, the financial database of the Ministry of Economic Affairs and Finance, codal website, etc. have been used. After extracting the information, and adjusting them in the form of an integrated risk model, the objective function and constraints are entered in MATLAB software and the variables of risk and return profit and loss on assets and Debts were obtained using particle swarm algorithms, genetics, and gray wolves, and we compared their results using SPSS 16 software. After that, first the descriptive statistics were analyzed and then inferential statistics were performed. after reviewing the results of comparing the evaluation indicators of algorithms, it was determined that the gray wolf algorithm is efficient. Provides better goal function optimization. Also, by examining the research hypotheses, it was found that particle swarm algorithms and genetics have the same efficiency for assessing the integrated risk of the banking system. Provides better problem solving.
    Keywords: Risk, Risk Assessment, Gray Wolf Algorithm, Genetic algorithm, Particle Swarm Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال