به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

autoencoder

در نشریات گروه مدیریت
تکرار جستجوی کلیدواژه autoencoder در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه autoencoder در مقالات مجلات علمی
  • یعقوب احمدلو، علیرضا پورابراهیمی*، جعفر تنها، علی رجب زاده قطری

    موارد کلاهبرداری در سال های اخیر به ویژه در زمینه های مهم و حساس مالی و بیمه ای افزایش یافته است. از این رو، برای مقابله با این گونه کلاهبرداری ها نیاز به اقدامات متفاوتی نسبت به روش های بازرسی سنتی وجود دارد. بیمه کشاورزی نیز با توجه به ماهیت و گستردگی وسیع آن از این تهدید مستثنا نبوده و سالانه هزینه های زیادی صرف پرداخت به خسارت های ساختگی می شود. این پژوهش با هدف ارایه مدلی برای کشف ادعاهای خسارت غیرواقعی در بیمه کشاورزی با بکارگیری تکنیک های داده کاوی و یادگیری ماشین ارایه شد. برای ساخت مدل یادگیری عمیق مورد استفاده قرار گرفت. داده های مورد استفاده از صندوق بیمه کشاورزی اخذ شد و مربوط به بیمه نامه های گندم آبی و دیم استان خوزستان بود که در سال زراعی 1399-1398 برای آنها غرامت پرداخت شده بود. بعد از آماده سازی و پیش پردازش داده ها، با استفاده از یادگیری عمیق نسبت به کشف موارد غیرعادی اقدام و نتایج توسط کارشناسان صندوق بیمه کشاورزی مورد ارزیابی قرار گرفت. بعد از تحلیل نتایج مشخص شد یک درصد از خسارت های پرداختی مربوط به درخواست های غیرواقعی بوده و در پرداخت خسارت بایستی دقت و بررسی بیشتری انجام شود. دقت مدل در تشخیص موارد غیرعادی برای گندم آبی و دیم به ترتیب برابر با 53/53 و 63/37 درصد بدست آمد. در بررسی نتایج مشخص شد 5 دسته رفتار غیرعادی منجر به پرداخت خسارت غیرواقعی شده اند که رفتار عدم ارایه مستندات خسارت فراوانی بیشتری نسبت به بقیه داشت.

    کلید واژگان: تشخیص ناهنجاری، بیمه کشاورزی، یادگیری عمیق، خودرمزگذار
    Yaqub Ahmadlou, Alireza Pourebrahimi *, Jafar Tanha, Ali Rajabzadeh Ghatari

    Fraud cases have increased in recent years, especially in important and sensitive financial and insurance fields. Therefore, to deal with such frauds, there is a need for different measures than traditional inspection methods. Agricultural insurance is also not exempted from this threat due to its nature and wide extent and every year a lot of money is spent on paying fake damages. This research was presented with the aim of providing a model to discover unrealistic damage claims in agricultural insurance by using data mining and machine learning techniques. It was used to build a deep learning model. The data used was obtained from the Agricultural Insurance Fund and related to wet and rainfed wheat insurance policies of Khuzestan province, for which compensation was paid in the 2018-2019 crop year. After preparing and preprocessing the data, using deep learning to discover unusual cases, the action and results were evaluated by the experts of the Agricultural Insurance Fund. After analyzing the results, it was found that 1% of the damages paid were related to unrealistic requests and more care should be taken in paying the damages. The accuracy of the model in detecting unusual cases for wet and dry wheat was 53.53 and 63.37 percent, respectively. In the review of the results, it was found that 5 categories of unusual behavior have led to the payment of unrealistic damages, and the behavior of not providing damage documentation was more frequent than the others.

    Keywords: Anomaly Detection, Crop Insurance, Deep Learning, Autoencoder
  • منیره حسینی*، الناز گلوی
    تشخیص اجتماع یک موضوع مهم در تحلیل شبکه های اجتماعی می باشد و برای درک ساختار شبکه های پیچیده ضروری است. در تشخیص اجتماع هدف، شناسایی گروه هایی است که گره های گروه به طور متراکم با هم در ارتباط هستند. در این تحقیق، ضمن ارایه معماری جامع و یکپارچه ای از روش های تشخیص اجتماع با یادگیری عمیق، از تکنیک های یادگیری عمیق برای کنترل داده های گراف با ابعاد بالا استفاده شده است. روش های کلاسیک تشخیص اجتماع برای شبکه های با ابعاد پایین مناسب هستند. از این رو، کاهش ابعاد شبکه های پیچیده موضوع مهمی در تشخیص اجتماع به شمار می آید. در این تحقیق، ابتدا ماتریس شباهت جدیدی از توپولوژی شبکه برای آشکار کردن اتصالات مستقیم و غیر مستقیم بین گره ها ایجاد می شود. سپس یک خودمرزگذار پشته براساس یادگیری بدون نظارت برای کاهش ابعاد طراحی شده است. پس ازآن الگوریتم های مختلف خوشه بندی تست و برای تشحیص اجتماعات به کار برده می شوند. ارزیابی مدل پیشنهادی تحقیق، با انجام آزمایش های متعدد بر روی معیار استاندارد و شش مجموعه داده واقعی کاراته، دلفین ها، فوتبال، کتاب های سیاسی،کرا و شهروند مورد بررسی قرار می گیرد. نتایج ارزیابی روش پیشنهادی، در مجموعه داده فوتبال در مقایسه با دوازده الگوریتم مطرح به کار رفته در تحقیقات گذشته دقت بالاتری در شناسایی اجتماعات دارد و در سایر مجموعه داده ها در مقایسه با سیزده الگوریتم بهبود قابل توجهی را نشان می دهد.
    کلید واژگان: تشخیص اجتماع، یادگیری عمیق، خودرمز گذار، شبکه های پیچیده
    Monireh Hosseini *, Elnaz Galavi
    Community detection is an important topic for social network analysis and is also essential to understanding complex networks structure. In community detection, the goal is to determine the groups in which the group nodes are densely connected to each other. In this research, deep learning techniques have been used to control graph data with high dimensions, while presenting a comprehensive and integrated architecture of community recognition methods with deep learning. Community detection classic approaches are suitable for networks with low dimensions. Therefore, the reduction of complex network dimensions is counted as a significant topic in community detection. In this paper, in order to reveal the direct and indirect connections among nodes, first a new similarity matrix of network topology is built. Then, a stacked auto-encoder is designed to decrease dimensions based on unsupervised learning. In order to detect communities, various clustering algorithms are then tested and utilized. Evaluation of the proposed research model is performed by surveying various experiments on standard criteria and six real data sets of Karate, Dolphins, Football, Polbooks, Cora and Citeseer. The proposed method evaluation outcomes show a higher accuracy in the identification of communities in the football data set compared to the twelve proposed algorithms used in past researches, and show a significant improvement in other data sets compared to the thirteen algorithms.
    Keywords: Community detection, Deep Learning, Autoencoder, Complex networks
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال