fuzzy inference system
در نشریات گروه علوم پایه-
Upper-limb exoskeleton robots have a significant impact on rehabilitation, assistive technology, and human augmentation, as they can restore or enhance human physical abilities. This paper presents a novel control approach, called Adaptive Fractional Integral Terminal Sliding Mode (AFITSM), which combines an exponential reaching law with a unique interval type-2 Fuzzy Inference System (FIS). This controller is designed to achieve zero-force control of a 5-degree-of-freedom upper-limb exoskeleton robot, even in the presence of bounded uncertainties. The controller's integral terminal sliding surface ensures that the system converges in a finite time, allowing the exoskeleton to reach its desired state quickly, which is critical in time-sensitive applications. The exponential switching control term reduces chattering and tracking errors, while the AFITSM controller's adaptability, enabled by the interval type-2 FIS, allows it to adjust its parameters in real-time to handle uncertainties and external disturbances. Numerical simulations demonstrate the effectiveness and superiority of the proposed control method over traditional control approaches.Keywords: Zero-Force Control, Adaptive Control, Fractional Sliding Mode Control, Exoskeleton Robot, Fuzzy Inference System
-
Due to the complexity of operating conditions, predicting corrosion in natural gas pipelines is a challenge, and therefore its use in the gas industry is problematic. So, the present study employs corrosion risk management in control systems and decision prediction with fuzzy inference systems to address the uncertain phenomena of critical factors affecting natural gas pipelines. In the study, 84 factors were derived and 14 critical factors were identified using the Lawshe approach. The Boehm risk management framework was used and the factors were analysed in pairs in a fuzzy inference system. The probability and consequences of each factor were determined according to the API 581 standard and the weight coefficient of each factor was determined using the FUCOM method. In this study, a fuzzy inference system with two fuzzy inference subsystems was developed to comprehensively address both aspects of evaluation and response. First, the system uses the API 581 standard risk matrix to identify the risk level, followed by the risk response strategy determination through the sensitivity risk priority index chart. The results show that at the first level of the system, the highest risk was classified as severe and harsh, while at the second level of the system, the maximum output behavior occurred during the wear-out phase of the pipeline. The proposed fuzzy inference system has the potential to significantly contribute to the effective management of pipeline corrosion risk and the economic productivity of the gas industry.
Keywords: Modeling, Fuzzy Inference System, Natural Gas Pipelines, Risk Management, Corrosion Risk, Corrosion Management -
In this study, the removal efficiency of ceftriaxone (CTX) from aqueous media was assessed via nano zero-valent iron (nZVI) incorporated with strontium hexaferrite (SrFe12O19) (nZVI/SrFe12O19). The synthesized adsorbent was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier-Transform InfraRed (FT-IR), spectroscopy, and X-Ray Diffraction (XRD). The experiments with different parameters such as pH, adsorbent dosage, and initial concentration were designed. Two artificial intelligence methods, including the Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to model for predicting the percentage of CTX removal. The mean recovery value was found to be 100.03% and 100.0006% for FIS and ANFIS, respectively. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were 0.1291, 0.0384%, and 0.0026, 0.0105% for FIS and ANFIS, respectively. These results represent that both FIS and ANFIS models are capable of predicting the removal percentage of CTX with high precision and accuracy. It can also be said that the ANFIS model indicated a higher predictive ability than the FIS model based on the good agreement with predicting values of experimental data. The nZVI/SrFe12O19 can be used effectively to overcome contamination problems posed by antibiotics in the environment.Keywords: Fuzzy Inference System, Adaptive Neuro-Fuzzy Inference System, Nano Zero-Valent Iron, Ceftriaxone, Adsorption
-
A facile chemical mixing approach was used to prepare TiO2/ZnO photocatalystswith different mass ratios. The photodegradation activity was tested against paracetamol in an aqueous phase assisted by low UVC-light intensity (9 W). TiO2/ZnO particles mainly exhibited irregular shapes with uniform distributions and high crystallinity degree, the primary oxidation state in the structure is titanium Ti4+ of anatase TiO2 (459.2 and 464.9 eV), and the presence of standard chemical state of Zn2+ (1021.9 and 1044.9 eV). The composite with a 1:5 mass ratio displayed a rapid and outstanding degradation percentage of 95% and a rate of 1.83 × 10-2 min-1. The best photocatalyst can be recycled up to five times towards paracetamol degradation without any regeneration step or severe deactivation. A Fuzzy inference system (FIS) was computed for the first time to investigate the relationship between the TiO2/ZnO ratio, degradation percentage, and rate constant. The optimal concentration of 9 mg/L was obtained, whereby the degradation percentage and rate were sufficiently maintained above 90% and 0.19 mg/L.min, respectively. Using a fuzzy logic controller (FLC) in this work enables future guidance and prediction for developing the best TiO2/ZnO photocatalysts for real-world water remediation processes.Highlights 1. Facile preparation of TiO2/ZnO composite photocatalyst via simple mixing for degradation of paracetamol under low UVC light intensity (9 W). 2. TiO2/ZnO particles are mostly exhibited irregular shapes with uniform distributions and high crystallinity degree, the main oxidation state in the structure is titanium Ti4+ of anatase TiO2 (459.2 and 464.9 eV), and the presence of standard chemical state of Zn2+ (1021.9 and 1044.9 eV). 3. TiO2/ZnO (1:5) displayed a rapid and outstanding degradation percentage of 95% and rate of 1.83 × 10-2 min-1, in accordance with pseudo first-order kinetics. 4. The optimal concentration of 9 mg/L was computed by the prediction using fuzzy inference system (FIS) for the first time, whereby the degradation percentage and rate were sufficiently maintained above 90% and 0.19 mg/L.min, respectively. 5. The stability of TiO2/ZnO composite photocatalyst towards paracetamol degradation was retained up to 5 cycles, without undergo any regeneration procedure.
Keywords: Fuzzy Inference System, Paracetamol, Photodegradation, Titanium Dioxide, Water Remediation, Zinc Oxide -
Credit scoring is one of the fundamental concepts in bank industry, used for analysing and evaluating all of the customers requesting for facilities. Because of its importance to banks’ profitability, especially in the developing countries, this study aims to propose a fuzzy inference system (FIS) model for credit scoring of legal clients. This research is applied in terms of purpose and survey in terms of method. In the first step, after reviewing the literature, the evaluation criteria for legal client’s appraisal were identified, and 29 out of them were selected. In the next step, these criteria were analysed by the research experts and using a Delphi method, and 12 more important criteria were selected and organized in 4 categories for FIS modelling. Then, a researcher made questionnaire was developed to constitute rules for Main FIS and its 4 sub-FISs. Performance measure (Sub-FIS1) has four inputs: return of asset, fixed assets to equity, average customer account and customer capital. Leverage measure (Sub-FIS2) has two inputs: debt ratio and equity ratio. Borrowing measure (Sub-FIS3) has four inputs: ratio of deferred amount to current assets, amount of received facilities, borrowing capacity and amount of requested facilities, and finally, credit risk measure (Sub-FIS4) has two inputs; type of guarantee and the credit risk of the previous period. The proposed system designed based on Gaussian membership function and implemented in MATLAB. Finally, model’s validity was tested by extreme condition test. Comparing the results of the proposed FIS and the bank validation system, shows the proposed model can be considered suitable for credit scoring.
Keywords: Credit Scoring, Legal Clients, Bank Loan, Fuzzy Inference System -
هدف
ارزیابی عملکرد کارکنان یکی از مهم ترین نیازمندی های مدیران ارشد سازمان ها است. در این راستا یکی از چالش ها، ارزیابی عملکرد کارکنان ستادی است، که به دلیل ماهیت فعالیت آن ها، تعریف شاخص های کمی به تنهایی نمی تواند ارزیابی قابل قبولی را ارایه دهد. لذا در این پژوهش به ارایه یک مدل فازی کاربردی جهت ارزیابی کارکنان ستادی پرداخته شده است.
روش شناسی پژوهش:
این پژوهش به توسعه یک سیستم ارزیابی عملکرد فازی سلسله مراتبی, متشکل از شاخص های کیفی و کمی به صورت همزمان پرداخته است. شاخص ها متشکل از 7 شاخص کمی و 5 شاخص کیفی است که با نظر 11 مدیر ارشد سازمان شناسایی و فازی سازی شده است. در نظر گرفتن همزمان تمامی شاخص ها در یک سیستم نیازمند تعداد قواعد فازی بسیار زیادی خواهد بود، لذا در این مقاله از یک مدل قدم به قدم با سیستم های فازی بهم پیوسته و سلسله مراتبی استفاده شده، که تعداد قواعد را به طور محسوسی کاهش داده است. در نهایت مدل توسعه داده شده در ابزار Simulink نرم افزار متلب و با روش ممدانی اجرایی شده است.
یافته هانتایج ارزیابی مدل توسعه داده شده با دقت خوبی به انتظارات نزدیک بوده و می تواند مبنای مناسبی برای ارزیابی کارکنان قرار گیرد. از مزایای این مدل دقت نسبتا خوب آن نسبت به مدل های سنتی و رضایت مندی بیش تر کارکنان است، و موجب می گردد ارزیابی های سلیقه ای حاصل از پیش داوری، روابط و... را تا حدود زیادی حذف شود، همچنین ارزیابی را برای سرپرستان و مدیران ساده و سریع تر خواهد نمود.
اصالت/ارزش افزوده علمی:
مدل ارایه شده یک رویکرد کاربردی است که به صورت عملی در یک سازمان واقعی اجرایی شده است و این امکان برای سایر سازمان ها نیز وجود دارد که با تغییر برخی شاخص ها متناسب با فعالیت آن سازمان به ارزیابی کارکنان خود بپردازند.
کلید واژگان: فازی، سیستم استنتاج فازی، فازی سلسله مراتبی، ارزیابی عملکرد، ارزیابی عملکرد کارکنان ستادی، سازمان های خدمات محور، کارکنان ستادیPurposeEvaluating the performance of employees is one of the most critical requirements for senior managers in organizations. One of the challenges in this regard is the assessment of the performance of staff personnel. Due to the nature of their activities, defining quantitative indicators alone cannot provide an acceptable evaluation. Therefore, this research focuses on presenting an applied fuzzy model for the evaluation of staff personnel.
MethodologyThis study involves developing a hierarchical fuzzy performance evaluation system composed of both qualitative and quantitative indicators simultaneously. The indicators consist of 7 quantitative and 5 qualitative ones, identified and fuzzified with the input of 11 senior managers of the organization. Considering all indicators simultaneously in a system would require a very large number of fuzzy rules. Therefore, a step-by-step model with continuous and hierarchical fuzzy systems is used in this article, significantly reducing the number of rules. Finally, the developed model is implemented in Simulink, a Matlab tool, using the Mamdani method.
FindingsThe results of the `evaluation of the developed model closely matched expectations with good accuracy, providing a suitable basis for employee assessments. The advantages of this model include its relatively good accuracy compared to traditional models, higher employee satisfaction, and reducing subjective assessments resulting from bias, relationships, etc. It also enables faster and simpler evaluations for supervisors and managers.
Originality/Value:
The presented model is a practical approach that has been implemented in a real organization. It offers the possibility for other organizations to conduct employee evaluations by adjusting some indicators according to their activities, thereby adding value to the scientific field.
Keywords: Fuzzy, Fuzzy Inference System, Fuzzy Hierarchy, Performance Evaluation, Staff Performance Evaluation, Service-Oriented Organizations, Headquarters Staff -
Due to developments in printing technology, the number of counterfeit banknotes is increasing every year. Finding an effective method to detect counterfeit banknotes is an important task in business. Finding a reliable method to detect counterfeit banknotes is a crucial challenge in the world of economic transactions. Due to technological development, counterfeit banknotes may pass through the counterfeit banknote detection system based on physical and chemical properties undetected. In this study, an intelligent counterfeit banknote detection system based on a Genetic Fuzzy System (GFS) is proposed to detect counterfeit banknotes efficiently. GFS is a hybrid system that uses a network architecture to fine-tune the membership functions of a fuzzy inference system. The learning algorithms Fuzzy Classification, Genetic Fuzzy Classification, ANFIS Classification, and Genetic ANFIS Classification were applied to the dataset in the UCI machine learning repository to detect the authenticity of banknotes. The developed model was evaluated based on Accuracy (ACC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Error Mean, Error STD, and confusion matrix. The experimental results and statistical analysis showed that the classification performance of the proposed model was evaluated as follows: Fuzzy = 97.64%, GA_Fuzzy = 98.60%, ANFIS = 80.83%, GA_ANFIS = 97.72% accuracy (ACC). This shows the significant potential of the proposed GFS models for fraud detection.Keywords: ANFIS, Counterfeit Banknotes, Fuzzy inference system, Genetic Fuzzy system, Genetic Algorithm
-
The radon transform has a wide application in seismic processing for each project in different areas. Multiple attenuation is mostly summarized in the use of radon analysis in practice, especially in marine data processing. The definition of mute function is the major challenge in parabolic radon transform. In this paper, a method for segmentation of the radon transform by fuzzy inference system is introduced to separate energy parts in the radon domain. We applied a fuzzy inference system based on the property of energy distribution and its attribute in the radon domain. The result of clustering is the partitioning of the radon domain in three major classes: 1- random noise, 2- multiple, and 3- primary and multiple. The result of applying the new method on real data has shown the applicability of the new method for separation of multiple class from other classes that can assist the processor to define the mute function in the absence of other events in the radon domain.Keywords: Fuzzy inference system, multiple attenuation, Radon transform, fuzzy partitioning, Fuzzy C-Mean Clustering
-
COVID-19, an epidemic disease, has challenged human lives all over the world. Governments and scientific communities are trying their level best to help the masses. This disease which is caused by corona virus majorly attacks the upper respiratory system rendering the human immunity incapacitated and, in some cases, proving fatal. Therefore, it is very much important to identify the infected people quickly and accurately, so that it can be prevented from spread. Early addressal of the symptoms can help to prevent the disease to become severe for all mankind. This calls for the development of a decision-making system to help the medical fraternity for the timely action. This proposed fuzzy based system predicts Covid-19 based on individuals’ symptoms and parameters. It receives input parameters as fever, cough, breathing difficulty, muscle ache, sore throat, travel history, age, medical history in the form of different membership functions and generates one output that predicts the likelihood of a person being infected with COVID-19 using Mamdani fuzzy inference system. The timely prognosis of the disease at home isolation or at the security checks can help the patient to seek the medical treatment as early as possible. Patient case studies, real time observations, cluster cases were studied to create the rule base for FDMS. The results are validated by using real-time individuals test cases on the proposed system which yields 97.2% accuracy, 100% sensitivity and 96.2% specificity.Keywords: Coronavirus disease, COVID-19, Fuzzy logic, Fuzzy inference system, Membership Functions, Medical Symptoms
-
The Iranian plateau is located in the high seismicity belt. Earthquake can inflict severe loss of life and property, especially when they occur in densely populated areas. Therefore, seismic hazard evaluation is very essential to prevent the harmful effects. The region of the study is located in the northwest of Iran, between 43°-50° E longitude and 35.5°-40.5° N latitude. This city which is located in the center of East Azerbaijan province, has been ruined by terrible earthquakes, which is due to the presence of active faults in the region. Seismic hazard assessment similar to other seismology researches is very complicated due to the effect of different parameters in an earthquake occurring with uncertainty. The amount of uncertainty should be considered in a rational way. The fuzzy method is a suitable method that is used as a decision-making method for solving problems and modeling uncertainties and ambiguities. We used a fuzzy inference system, as the practice is based on uncertainty estimation of seismic hazard for Tabriz region. Peak ground Acceleration value is estimated for fuzzy Logic System in deterministic method 0.55g which is obtained from a seismic source with a Mmax=8.0 at a distance of 36.98 km of Tabriz city.The contour map of the peak ground acceleration throughout Tabriz city can help in urban planning.
Keywords: Fuzzy inference system, Seismic hazard, Deterministic Approach, Peak Ground Acceleration, Tabriz, Iran -
تصمیمات دولت در مورد بخش خصوصی همواره با اهمیت بالا و چالشهایی روبرو است، زیرا این تصمیمات باید در عیت تطابق با استانداردها و الزامات عملکردی، منافع سرمایه گذاران را نیز تامین نماید. این مطالعه شامل تصمیمات حوزه آموزش میشود و به دلیل ماهیت حاکمیتی آموزش و استراتژیهای دولتها در این خصوص، بخشهای خصوصی که در این حوزه فعالیت میکنند تحت تاثیر پیامدهای مختلف این تصمیمات قرار میگیرند. در این مقاله، هدف ما پیشنهاد سیستمی برای تصمیمگیری در مورد چگونگی توسعه آموزشهای علمی کاربردی در مراکز آموزش علمی کاربردی (ASEC) است که تحت نظارت دانشگاه جامع علمی کاربردی UAST در ایران فعالیت میکنند. روشی که برای دستیابی به این هدف استفاده میشود سیستم استنتاج فازی (FIS) است. مدل ارایه شده در این مطالعه شامل یک سیستم استنتاج فازی دو بخشی است. اولین بخش مربوط به توسعه کمی آموزشهای عالی علمی کاربردی است، که شامل 4 ورودی، 242 ضابطه و یک خروجی جهت تعیین تعداد دوره های آموزشی درخواستی (CR) برای هر مرکز آموزش علمی کاربردی است. بخش دوم، مربوط به توسعه کیفی آموزشهای عالی علمی کاربردی است، که شامل 9 ورودی، 350 ضابطه و یک خروجی جهت ارزیابی توانایی و صالحیت هر مرکز آموزش علمی کاربردی برای هر دوره آموزشی خاص با در نظر گرفتن پیشینه آن دوره آموزشی، سابقه پذیرش دانشجو و تخصص مرکز آموزش، نظر کمیته های مربوطه و فراوانی تخصیص آن دوره آموزشی در شهر یا استان میشود. هر بخش ورودیها و ضوابطی دارد که توسط متخصصان این حوزه تعیین شده و مورد استفاده قرار میگیرند. نتایج نشان میدهد که استفاده از این روش باعث صرفهجویی در هزینه و زمان میشود. این مدل عوامل مختلف را بررسی نموده و در کمتر از 2 دقیقه نتایج تجزیه و تحلیل را ارایه میدهد، در حالی که در عمل این قبیل تصمیمگیریها نیازمند حدود 1650 نفر/ساعت کار در کمیته های مختلف میباشد که همه آنها نیازمند صرف هزینه و زمان مربوطبه خود هستند. همچنین، نتایج حاصل از مدل بسیار نزدیک به نتایج حاصله از برگزاری جلسات است، با این مزیت که اعمال تصمیمات فردی در این فرآیند را به حداقل ممکن رسانده، که این امر تا حد زیادی نیازهای تحقیق را برآورده میکند.
Always the decision of the government to the private sector is faced with the challenges and high level of importance, because these decisions should be taken at the meeting of standards and functional requirements to overcome investors' interests. These decisions include education, and due to the governance nature of education and the governments' strategies in this area, the private sectors who act in it, have been affected by the consequences of different decisions. \In this paper, our motivation is to propose a system to decide on how to develop applied academic educations at the Applied ScienceEducation Centers (ASEC's) which are supervised by the University of Applied Science and Technology (UAST) in Iran. The method used is theFuzzy Inference System (FIS) to reach this goal. The model performed in this study consists of a two-part FIS for two purposes straight ahead.The first concerns the quantitative development of higher applied education, including the number of Course Request (CR) for each ASEC with 4 inputs and 242 rules. The latter, is related to the qualitative development of higher applied education, including the assessment of the capability and competence of each ASEC for specific CR with the course and student admission background, specialty, committee's and council’s opinion, and frequency of course in city or province with 9 inputs, 350 rules, and an output. Each section has its inputs and rules that are determined and used by experts in this domain. \Our results show that using this method, provides some cost and time savings. This model analyzes in less than 2 minutes, while in practice it could be gain within 1650 person /hours work in different committees that all of them have their costs. Also, results are very close to reality with the advantage that there is no way to apply personal preferences, which largely meets the needs of research.
Keywords: Fuzzy Inference System, higher education development, university of applied science, technology -
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 217 -230Environmental pollution has become a green motivation to control the pollution increase in countries which its purpose is to reduce the negative effects of environmental pollution; hence, green chain supply management has an important role in the environmental impact of organizations. Therefore, the purpose of this study is to evaluate the green supply chain of small and medium manufacturing companies based on green productivity indicators. This research is based on practical purposes and quantitative research approaches. The statistical sample was designated by 297 small and medium manufacturing companies in East Azerbaijan province. In order to data collection, a researcher-made questionnaire based on the research literature has been used. The validity of the questionnaire was determined based on the validity of the structure and its reliability using Cronbach's alpha coefficient. To evaluate the green supply chain through green productivity indicators, a fuzzy inference system based on triangular membership functions, Mamdani inference and dependency rules has been used. The results show that the designed inference system based on green productivity indicators to evaluate the green supply chain with 43 dependency rules is able to evaluate the greenness measure of the supply chain of companies based on numerical values and linguistic wordsKeywords: Supply Chain Evaluation, Green Productivity, Fuzzy Inference System
-
در این مطالعه کارایی روش ژیوفیزیکی سرعت عبور موج فشاری (Vp) برای پیش بینی کیفیت توده سنگ های آهکی در مناطقی از رشته کوه های زاگرس مورد بررسی قرار گرفته است. جهت طبقه بندی کیفی توده سنگ های آهکی از شاخص طبقه بندی Q و شاخص طبقه بندی اصلاح شده آن برای توده سنگ های رسوبی (Qsrm) استفاده شده است. بدین منظور داده های مربوط به Vp، Q و Qsrm از محل ساختگاه سدهای کارون2، کارون 4، خرسان 3 و سد تنگ معشوره استخراج گردید و با استفاده از روش های درونیابی در نرم افزار ArcGIS، لایه های اطلاعاتی از Q، Qsrm و Vp بدست آمد. با استفاده از تجزیه و تحلیل رگرسیون ساده و چندمتغیره بر روی داده های استخراج شده از لایه های اطلاعاتی و استفاده از اصول منطق فازی (FIS)، مدل هایی جهت پیش بینی Q و Qsrm در توده سنگ های آهکی ارایه شده است. برای ارزیابی دقت مدل های بدست آمده، علاوه بر ضریب R2، شاخص های عملکرد (VAF) و جذر میانگین مربعات خطا (RMSE) مورد استفاده قرار گرفت. نتایج بدست آمده نشان می دهد: از آنجا که شاخص Qsrm طیف گسترده تری از خواص توده سنگ را در نظر می گیرد، پیش بینی شاخص Qsrm با استفاده از Vp نسبت به پیش بینی شاخص Q، به واقعیت نزدیک تر است.کلید واژگان: شاخص کیفیت توده سنگ رسوبی، توده سنگ آهکی، روش های ژئوفیزیکی، روابط آماری، اصول منطق فازیIn this study, the efficiency of the compressive wave velocity (Vp) geophysical method for predicting the quality of limestone mass in areas of Zagros formation, has been investigated. For qualitative classification of limestone rock masses, the Q classification system and its modified classification system for sedimentary rocks (Qsrm) have been used. For this purpose, the data related to Vp, Q and Qsrm were extracted at the site of Karun 2, Karun 4, Khersan 3 and Tangeh Manshoureh dam sites and by using software interpolation methods in ArcGIS has been transformed into information layers. Using simple and multivariable regression analysis on data extracted from information layers and using Fuzzy Inference System (FIS), models for predicting Q and Qsrm in calcareous rock masses are presented. Also, to evaluate the accuracy of the obtained models, in addition to R2, performance indicators (VAF) and root mean square error (RMSE) were used. The results show that since the Qsrm index considers a wider range of massive properties, the prediction of the Qsrm value is closer to reality using geophysical methods than the Q index.Keywords: Sedimentary Rock Mass Quality Index, Limestone Rock Mass, Geophysical Methods, Empirical equations, Fuzzy inference system
-
نشریه علوم زمین، پیاپی 115 (بهار 1399)، صص 175 -186کانسار تیتیانیم خانیک - غازان در فاصله 82 کیلومتری شمال غرب ارومیه، بخش شمالی پهنه سنندج - سیرجان واقع است. هدف اصلی این پژوهش، شناسایی مناطق پتانسیل دار و تهیه نقشه پتانسیل معدنی در بخش سنگی کانسار خانیک - غازان به کمک سامانه استنتاج گر فازی (FIS) می باشد. پس از تهیه نقشه های فاکتوری، مراحل اصلی این پژوهش شامل فازی سازی نقشه های فاکتوری با استفاده از متغیرهای زبانی و توابع عضویت مناسب، ترکیب نقشه های فاکتور با کمک استنتاج فازی (به وسیله ایجاد پایگاه قوانین اگر - آنگاه فازی)، شناسایی مناطق مستعد و تهیه نقشه پتانسیل معدنی با استفاده از قطعی سازی خروجی است. همچنین، طی این تحقیق، به منظور کنترل صحت داده های بدست آمده سعی گردید، دو روش نوین تلفیقی دیگر شامل روش های منطق فازی و فرآیند تحلیل سلسله مراتبی نیز به کار گرفته شود. نتایج بدست آمده از روش های مذکور تاییدکننده و مکمل یکدیگر بوده و مناطق پرپتانسیل کانی سازی را نمایان می کنند. بررسی های اکتشافی انجام گرفته از جمله شواهد صحرایی رخنمون ها، کانه زایی و نمونه برداری از رخنمون های سنگی به تعداد 80 نمونه در محدوده مورد مطالعه، موید این موضوع می باشد. براساس نتایج حاصل، بخش مرکزی محدوده مورد مطالعه برای ادامه عملیات اکتشافی بخصوص اکتشافات عمقی به روش حفاری مغزه گیری مناسب تشخیص داده شد.کلید واژگان: کانی سازی تیتانیم، سامانه استنتاجگر فازی، فرآیند تحلیل سلسله مراتبی، منطق فازی، پتانسیل یابی معدنیThe Khanik-Ghazan Titanium ore deposit is located at 82 km northwest of Urmia, northern Sanandaj-Sirjan zone. The main objective of this research is to identify potentially mineralized areas and to prepare a mineral prospectivity map in the Khanik-Ghazan deposit applying the Fuzzy Inference System (FIS). After preparing the facto maps, the main stages of the investigation comprise the preparation of fuzzy factor maps using the appropriate linguistic variables and proper membership functions, combining factor maps using the fuzzy inference (by creating a fuzzy database of If-OR rules), identification of susceptible areas, and the generation of a potential mineral map using the output closure. In this study, in order to control the accuracy of the data, we tried to apply two new integrated methods including the fuzzy logic and hierarchical analysis processes. The results obtained from these methods was confirmed and complemented by each other and demonstrated highly potential mineralized zones. This statement is validated by several investigation methods including the field surveys and evidence of 80 samples collected from rock outcrops. Based on obtained results and modelling of geophysical data, the central part of the study area was recognized for further exploration using the drillcore subsurface exploration.Keywords: Titanium ore mineralization, fuzzy inference system, analytical hierarchy process, Fuzzy logic, mineral prospection
-
The purpose of this study was to develop a model for the estimation of rock mass classification of Sarvak limestone in the Bakhtiari dam site, south-west (SW) Iran. Q system had been used as the starting point for the rock mass classification. This method was modified for sedimentary rock mass which is known as Qsrm. Because Qsrm considers a wide range of rock mass properties, it has become a tool for rock mass classification that more correlates with geophysical parameters. This study tried to revise and empower the correlation between P-wave velocity (Vp) with Q and Qsrm in Sarvak limestone. By using data sets of Bakhtiari Dam Site (BDS) in SW Iran and multivariate regression and the Fuzzy Inference System (FIS), models were rendered for prediction of Q and Qsrm. About 700 sets of data were used for modeling and Vp was considered as the input parameter. The regression equations showed the relationship between Vp with Q and Qsrm,under conditions of quadratic relations, obtained coefficients of determination (R2) of 0.49 and 0.66, respectively. The correlation coefficient was calculated as 0.82 for the Qsrm obtained from FIS models. Also, Variance Accounted For (VAF) and Root Means Square Error (RMSE) indexes were also used for evaluation of prediction accuracy of models. Results showed that Vp has better performance in prediction of Qsrm than Q and theFIS model showed the best prediction results. Because these models have accuracy, they could be used in similar conditions.
Keywords: Rock Mass Quality, Sarvak Limestone, P-Wave Velocity, Empirical Equations, Fuzzy Inference System -
کاربرد پساب شهری در مصارف کشاورزی یکی از گزینه های حل بحران آب است. این در حالیست که عدم قطعیت، ارزیابی کیفیت پساب را به امری چالش برانگیز تبدیل نموده است. سیستم استنتاج فازی یکی از راه های مواجهه با عدم قطعیت در ارزیابی کیفی پساب سیستم های پیچیده است. هدف از مطالعه حاضر، ارزیابی سریع و مطمئن کیفیت پساب تصفیه خانه شهری صاحبقرانیه بر پایه سیستم استنتاج فازی به منظور استفاده مجدد در مصارف کشاورزی است. در ابتدا، با استفاده از روش دلفی 8 پارامتر کیفی پساب شامل کلی فرم مدفوعی، نماتد، pH، TDS، TSS، COD، BOD5 و نیترات انتخاب شدند. داده های کیفی 60 نمونه پساب تصفیه خانه شهری صابحقرانیه که به صورت ماهانه از سال های 1391 تا 1396 نمونه برداری شده اند؛ براساس سیستم استنتاج فازی ممدانی مورد ارزیابی قرارگرفتند. نتایج سیستم فازی نشان داد که تعداد نمونه هایی که به ترتیب در رده عالی، خوب و بد قرار گرفته اند برابر 39، 20 و 1 هستند. به طور کلی می توان نتیجه گرفت که استفاده از سیستم استنتاج فازی ممدانی در ارزیابی کیفیت پساب شهری مفید بوده و می توان آن را به عنوان ابزار اولویت بندی در مدیریت پساب به کار گرفت.کلید واژگان: "، پساب شهری"، "، سیستم استنتاج فازی"، "، استفاده مجدد"، "، مصارف کشاورزی"Expanded Abstract Introduction There is an increasing global trend in using effluent as a non-conventional water resource for a wide range of applications. effluent can be used in a number of applications, including Makeup water in cooling towers and boilers, Equipment cleaning, Vehicle washing, Agricultural irrigation, Landscaping and lawn maintenance, Urban reuse (air conditioning, toilet flushing, etc.), and Fire protection. The scarcity of freshwater resources is a serious problem in arid and semi-arid regions, such as Iran. Effluent can have different advantages including being a constant, reliable water resource and reduces the amount of water extracted from the environment. Wastewater can be a vast resource if reclaimed properly to become effluent. The right on-site treatment system can transform treated wastewater into a reliable alternative water resource. In a case of inappropriate treatment, wastewater is discharged untreated into rivers, lakes and oceans which is a global problem. Today, around 80% of all wastewater is discharged untreated into rivers, lakes and oceans. It poses health and environmental problems. Recovering water, energy, nutrients and other precious materials embedded in wastewater is an opportunity to cover water demand and contribute to improved water security. To handle increased water demand, effluent is offered to be used for agricultural irrigation. The use of effluent for agricultural irrigation is viewed as a positive means of recycling water due to the potential large volumes of water that can be reused. The availability of nutrients such as N, P or K is a necessity for plant growth. One of the advantages of using effluent for irrigation is supplying nutrients and reducing use of synthetic fertilizers. Effluent can provide the soils with micronutrients and organic matter. There are concerns, however, about the impact of the quality of the effluent, both on the crop itself and on the consumers of the crops. Quality issues of the effluent can cause problems in agriculture incluing nutrient concentrations, heavy metals, and the presence of contaminants such as human and animal pathogens, pharmaceuticals and etc. There are international guidelines and national regulatory standards for quality control of effluent in agriculture. Department of environment in Iran issued the standard for effluent quality used in agricultural irrigation. EPA and WHO have also guidelines for the safe use of effluent. Using effluent for various applications including agriculture irrigation has been examined in many studies. These studies focus on comparing quality parameters of the effluent with the standards without concerning uncertainty in a framework for overall suitability of the effluent quality. This study aims to present a framework of effluent quality assessment for using in agriculture. We perform such an assessment by considering related uncertainty via Fuzzy Inference System and integrating it with Delphi method. The proposed framework can be used for wide range of applications in which effluent can be reused as a source of water. Material & Methods Tehran city involves 7 operating wastewater treatment plants. Sahebgharanieh wastewater treatment plant is the oldest wastewater treatment plant in Iran which is located in Pasdaran Street (North Tehran). Its executive operations started in 1960 which was designed with the capacity of 2000 people as the covered population. The material of collecting network with the length of 5.3km is asbestos cement. Its average input flow is 25m3/h and the network’s diameters are 150 to 200 mm. In the first step, the most effective quality parameters of municipal effluent were identified through questionnaires. The questionnaires were given to the expert panel to be answered. The members were drawn from the university professors and industry sector research organizations. After aggregation of expert's opinion, 28 parameters were identified to assess municipal quality for reusing in agricultural irrigation. Delphi method was used to select the most important parameters from the total of 28 identified parameters. The Delphi method is a structured communication technique or method, originally developed as a systematic, interactive forecasting method which relies on a panel of experts. The experts were selected based on their educational level and work experience. The experts answered questionnaires in two or more rounds. Each member of the panel was sent a questionnaire with instructions to comment on each parameter by considering their importance in overall quality of the effluent for reusing in agricultural irrigation based on Likert scale (1= least important to 5=most important). In the second round, experts were asked to revise their earlier answers in light of the replies of other members of their panel. Finally, the process was stopped since there was low difference between scores of the first and second round. A predefined stop criterion and the mean scores of the final rounds determine the 8 parameters (i.e. Fecal Coliform, pH, TDS, TSS, COD, BOD5, NO3). In the second step, Mamdani fuzzy inference system was used to assess the overall quality of the effluent. The most commonly used fuzzy inference technique is Mamdani method. It is performed in four steps of: 1- Fuzzification of the input variables. 2- Rule evaluation. 3- Aggregation of the rule outputs. 4- Defuzzification. After fuzzification, 99 rules were used. After defuzzification, the results were compared with the results of crisp method. Results Based on fuzzy results, 39 samples were categorized as "excellent, 20 samples as "good", and 1 sample as "poor". According to crisp method, pH, BOD5, COD, TSS, and NO3 in the first sample were categorized as "low", Fecal Coliform and TDS were categorized as "medium" and "high" respectively. Based on fuzzy results, the sample was categorized as "excellent". The fifth sample was categorized as "poor" according to fuzzy results. In this sample pH and NO3 were categorized as "low". BOD5, COD, and fecal coliform were categorized as "medium" and Nematodes, TDS, TSS were categorized as "high". The ninth sample was categorized as "good". Fecal Coliform, nematodes, BOD5, COD, pH, and NO3 were categorized as "low". TSS and TDS were categorized as "medium" and "high" respectively. The last sample was categorized as "excellent" and all the parameters were "low". Fuzzy method results showed that samples No. 58, 59, and 60 were categorized as good and according to crisp method all the parameters except nematodes and TDS categorized as "high". Discussion & Conclusion Uncertainty as a result of data unavailability and incompleteness is a challenge in effluent quality assessment. In the present study, Mamdani fuzzy inference system was used to deal with uncertainty. Its ability to reflect the human thoughts and expertise in the assessment make it possible to deal with non-linear, uncertain, ambiguous and subjective information. In order to select the most important quality parameters considering agricultural irrigation, Delphi method was combined with Mamdani fuzzy inference system. Expert knowledge and standards were simultaneously used to determine membership functions. 8 parameters including Fecal Coliform, nematodes, pH, TDS, TSS, COD, BOD5, and NO3 were selected to assess the overall effluent quality for reusing in agricultural irrigation. The results showed the suitability of the selected 8 parameters in effluent quality assessment. Reviewing other studies showed that they just make a comparison between calculated quality parameters and standards. But, the present study presented a framework for overall effluent quality assessment. The proposed framework was demonstrated via the case study of a Sahebgharanieh wastewater treatment plant in Tehran. In order to indicate the model validity, the results of fuzzy model were compared with the results of crisp method. The comparison showed the same results. It can be concluded that Fuzzy model capability in considering thresholds in input and output values enables dealing with uncertainty. The proposed framework can be further used for other applications of effluent reuse such as industrial, aquaculture, environment, etc . Key words: Municipal effluent, Fuzzy inference system, Reuse, Agricultural uses.Keywords: Municipal effluent, Fuzzy inference system, Reuse, Agricultural uses
-
In the present work, the influences of temperature, solvent concentration and ultrasonic irradiation time were numerically analyzed on viscosity reduction of residue fuel oil (RFO). Ultrasonic irradiation was applied at power of 280 W and low frequency of 24 kHz. The main feature of this research is prediction and optimization of the kinematic viscosity data. The measured results of eighty-four samples, including 336 data points, were developed by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The ANN predictions were also compared with the ANFIS approach by means of various descriptive statistical indicators, including absolute average deviation (AAD), average relative deviation (ARD) and coefficient of correlation (R2). The AAD and R2 of the developed ANN model for kinematic viscosity prediction of overall set were 0.0107 and 0.99384, respectively. On the other hand, for ANFIS approach, the AAD of 0.02112 and R2 of 0.99279 were attained. Although accuracy and precision of the ANN model were more than the ANFIS approach, it has been illustrated that the proposed ANN and ANFIS models have a superior performance with acceptable errors on the RFO kinematic viscosity estimation. Findings of this research clearly revealed that the neural network and neuro-fuzzy approaches could be successfully employed for prediction and optimization of kinematic viscosity of RFO and high viscosity materials in oil processes.
Keywords: residue fuel oil, kinematic viscosity, Ultrasonic irradiation, Artificial Neural Network, Adaptive neuro, fuzzy inference system -
با توجه به گستردگی نواحی پتانسیل دار ذخیره معدنی در کشور، وجود نگرشی سامان مند برای شناسایی و تبدیل اندیس های معدنی به معادن، ضروری به نظر می رسد. تنوع مدل مفهومی ذخایر گوناگون معدنی، وجود داده های متنوع کمی و کیفی اکتشاف ذخایر معدنی و همچنین وجود نظرات کارشناسی و سلایق مختلف، فرایند تهیه نقشه پتانسیل معدنی را بسیار پیچیده می کند. تاکنون روش های مختلفی مانند همپوشانی شاخص، منطق فازی، شبکه عصبی و وزن های نشانگر برای مدل سازی این پیچیدگی به کار گرفته شده است. در فرایند اکتشاف ذخایر معدنی توجه همزمان به مدل سازی ماهیت غیر قطعی داده های اکتشافی، به کارگیری دانش کارشناسی و انعطاف پذیری روش برای انواع ذخایر معدنی در قالب سامانه ای یکپارچه، ضروری است. در مقایسه با روش های دیگر سامانه استنتاجگر فازی ویژگی های یادشده را دارد. برای بررسی این امر، در این پژوهش یک سامانه استنتاجگر فازی برای مدل سازی فرایند تهیه پتانسیل معدنی پیشنهاد و در اندیس مس چاه فیروزه پیاده سازی شد. مراحل اصلی این پژوهش شامل فازی سازی نقشه های فاکتور با استفاده از تعریف متغیرهای زبانی و توابع عضویت مناسب، ترکیب نقشه های فاکتور با کمک استنتاج فازی (به وسیله ایجاد پایگاه قوانین اگر- آنگاه فازی و به کارگیری مدل تصمیم گیری مناسب) و تهیه نقشه پتانسیل معدنی با استفاده از قطعی سازی خروجی، است. در نقشه پتانسیل معدنی تهیه شده، مناطق مستعد کانی سازی مس پورفیری، در نواحی مرکزی و با گسترش شمالی- جنوبی شناسایی شده اند. برای ارزیابی، 24 گمانه اکتشافی در منطقه با نقشه پتانسیل معدنی انطباق داده می شوند. بر پایه 4 نوع رده بندی نقشه پتانسیل معدنی، میزان تطابق برابر با 64/ 63 درصد، 75درصد، 95/ 63 درصد و 23/ 80 درصد محاسبه شد. نقشه پتانسیل معدنی تهیه شده در تعیین مناطق دارای پتانسیل خیلی ضعیف، دقیق تر است و با 52/ 81 درصد از گمانه های با وضعیت خیلی ضعیف انطباق دارد. همچنین نقشه پتانسیل معدنی به دست آمده با نقشه پتانسیل معدنی تهیه شده از این منطقه به کمک عملگرهای فازی (با بهینه ترین ترکیب عملگرهای فازی) و بدون فازی سازی نقشه های ورودی مقایسه شد. نتیجه مقایسه نشان داد که نقشه پتانسیل معدنی تهیه شده با استفاده از سامانه استنتاجگر فازی، در 4 رده بندی مورد استفاده در این پژوهش به طور میانگین 6 درصد تطابق بیشتری با گمانه های اکتشافی دارد.
کلید واژگان: نقشه پتانسیل معدنی، GIS، سامانه استنتاجگر فازی، کانسار مس پورفیری، چاه فیروزهDue to the extensive areas of potential mineral reserves in the country, it seems necessary to have a systematic approach to identify and convert indices of mineral deposits into mines. Existing various conceptual models of mineral deposits, variety of both quantitative and qualitative data to explore mineral deposits and the expertise and different interests, cause the mineral potential mapping process to be very complicated. So far, various methods such as the overlap index, fuzzy logic, neural networks and weights of evidence are used for modeling this complexity. Consideration the fuzzy nature of mineral exploration in the process of modeling exploratory data, applying expert knowledge and flexibility for all types of mineral deposits in the form of an integrated system is essential. Compared with other methods fuzzy inference system has stated characteristics. To verify this, in this study, a fuzzy inference system for modeling mineral potential was proposed and for the Chah Firoozeh copper deposit was implemented. The main stages of this research include fuzzifying factor maps using the appropriate membership functions and linguistic variables, combining factor maps using fuzzy inference (by creating if_then fuzzy rules database and using an appropriate decision-making model) and generating mineral potential map with defuzzification output. In the resulted mineral potential map, porphyry copper mineralization prone area is located in the central regions with north-south extension. For evaluation, 24 exploration boreholes in the area are complying with the mineral potential map. Based on the four classification types of mineral potential map, the compliance rate was calculated as 63.64%, 75%, 63.95% and 80.23%. Obtained mineral potential map is more accurate in the very low potential areas and 81.52% of the holes with very low state are located properly. In addition, resulted mineral potential map was compared with the mineral potential map generated using only fuzzy operators and without fuzzifying factor maps. The comparison shows that the mineral potential map that was generated using fuzzy inference system, in four classifications used in this study has 6% greater compliance with the exploration boreholes in average.Keywords: Mineral Potential Mapping, GIS, Fuzzy Inference System, Porphyry Copper Deposit, Chah Firoozeh -
در این مقاله به مدل بندی داده های ورودی دقیق-خروجی فازی پرداخته می شود و رویکرد رگرسیون مارس فازی با پارامترهای دقیق و جملات خطای فازی معرفی می گردد. روش پیشنهادی شامل دو مرحله است: در مرحله اول با استفاده از رگرسیون اسپلاین تطبیقی چندگانه (مارس) مراکز متغیر وابسته برآورد می شوند، و در مرحله دوم کمترین مقادیر خطاهای فازی بر اساس یک مساله بهینه سازی غیر خطی به دست می آیند. در انتها کاربرد مدل پیشنهاد شده در مدل بندی داده های واقعی در مهندسی آب نشان داده می شود. نتایج تجربی این مثال برتری روش پیشنهادی را در مقایسه با برخی از روش های متداول رگرسیون فازی کمترین توان های دوم خطا نشان می دهدکلید واژگان: رگرسیون اسپلاین تطبیقی چندگانه (مارس)، داده های فازی، سامانه استنتاج فازی، دبی رودخانهIn this paper، we deal with modeling crisp input-fuzzy output data by constructing a MARS-fuzzy regression model with crisp parameters estimation and fuzzy error terms for the fuzzy data set. The proposed method is a two-phase procedure which applies the MARS technique at phase one and an optimization problem at phase two to estimate the center and fuzziness of the response variable. A realistic application of the proposed method is also presented in a hydrology engineering problem. Empirical results demonstrate that the proposed approach is more efficient and more realistic than some traditional least-squares fuzzy regression models.Keywords: Multivariate Adaptive Regression Splines (MARS), Fuzzy data, Fuzzy inference system, Discharge, suspended load
-
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. The data sets used in this study are published laboratory and field data obtained from wave breaking on plane and barred, impermeable slopes collected from 24 sources. The comparison of results reveals that, the ANN model is more accurate in predicting both breaking wave height and water depth at the breaking point compared to the other methods.Keywords: Wave breaking, Breaker depth, height, Artificial neural network, Fuzzy inference system, ANFIS
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.