جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه eigenfunction در نشریات گروه علوم پایه
eigenfunction
در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه eigenfunction در مقالات مجلات علمی
-
In this paper, the eigenvalues and corresponding eigenfunctions of a fractional order Sturm-Liouville problem (FSLP) are approximated by using the fractional differential transform method (FDTM), which is a generalization of the differential transform method (DTM). FDTM reduces the proposed fourth-order FSLP to a system of algebraic equations. The resulting coefficient matrix defines a characteristic polynomial which its roots correspond to the eigenvalues of FSLP. The obtained numerical results which are compared with the results of other papers confirm the efficiency of the method.Keywords: Sturm-Liouville problem, Caputo fractional derivative, eigenvalue, Eigenfunction
-
Iranian Journal of Numerical Analysis and Optimization, Volume:13 Issue: 1, Winter 2023, PP 121 -140A new numerical scheme based on Genocchi polynomials is constructed to solve fractional Sturm–Liouville problems of order two in which the fractional derivative is considered in the Caputo sense. First, the differen-tial equation with boundary conditions is converted into the corresponding integral equation form. Next, the fractional integration and derivation op-erational matrices for Genocchi polynomials, are introduced and applied for approximating the eigenvalues of the problem. Then, the proposed polynomials are applied to approximate the corresponding eigenfunctions. Finally, some examples are presented to illustrate the efficiency and accu-racy of the numerical method. The results show that the proposed method is better than some other approximations involving orthogonal bases.Keywords: Sturm–Liouville problem, Caputo fractional derivative, Eigen-value, Eigenfunction, Genocchi polynomials
-
This paper aims to investigate the stability and numerical approximation of the Sivashinsky equations. We apply the Galerkin meshfree method based on the radial basis functions (RBFs) to discretize the spatial variables and use a group presenting scheme for the time discretization. Because the RBFs do not generally vanish on the boundary, they can not directly approximate a Dirichlet boundary problem by Galerkin method. To avoid this difficulty, an auxiliary parametrized technique is used to convert a Dirichlet boundary condition to a Robin one. In addition, we extend a stability theorem on the higher order elliptic equations such as the biharmonic equation by the eigenfunction expansion.Some experimental results will be presented to show the performance of the proposed method.Keywords: eigenvalue, Eigenfunction, Galerkin meshless method, Sivashinsky equation, Stability
-
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary ConditionsIn this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem. Finally, by the sequence of orthogonal eigenfunctions, we provide the eigenfunction expansions for twice continuously differentiable functions.Keywords: Boundary value problem, Eigenvalue, eigenfunction, completeness, eigenfunction expansion
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.