به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

iterative method

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه iterative method در نشریات گروه علوم پایه
  • Tusar Singh, Dwiti Behera *, Shno Othman Ahmed, Rostam Saeed
    In our research, a new third-order iterative method has been introduced. This method involves the creation of a new quadrature formula by averaging Simpson's 1/3 rd and Trapezoidal rules. The newly developed quadrature formula is then used to establish the new iterative scheme, which modifies the Newton-Raphson method. It has been demonstrated that the new iterative technique exhibits a convergence order of 3. Finally, examples have been provided to illustrate the effectiveness of the new process. The results indicate that the new approach finds the root of the nonlinear equation in fewer iterations compared to other methods, suggesting the potential superiority of our newly developed scheme.
    Keywords: Trapezoidal Rule, Simpson' S 1, 3 Rd, Newton’S Method, Order Of Convergence, Iterative Method
  • Manochehr Kazemi *, Hamid Sahebi
    ‎ In this paper, an iterative method of successive approximations based on the trapezoidal quadrature rule to solve two-dimensional Fredholm integral equations of second kind (2DFIE) is proposed. The error estimation of the proposed method is presented. The benefit of the method is that we do not have to solve a system of algebraic equations. Finally, a numerical example verify the theoretical results and show the accuracy of the method.
    Keywords: Integral Equations, Trapezoidal Quadrature, Uniform Modulus Of Continuity, Iterative Method
  • Hamid Mottaghi Golshan *, Kianoush Fathi Vajargah, Reza Ezzati
    In this paper, we provide a quadrature-based iterative approach to solve three-dimensional nonlinear fuzzy Volterra integral equations of the second kind. The error estimation as well as convergence analysis of the proposed method are also provided. Finally, numerical experiments validate the theoretical findings. The suggested method's advantages include   precision, accuracy and ease of use.
    Keywords: Fuzzy Volterra Integral Equation, Quadrature Formula, Modulus Of Continuity, Successive Approximation, Iterative Method
  • Oghovese Ogbereyivwe, Salisu Umar

    This paper introduces two families of modified Householder’s method (HM) that are optimal in line with Kung-Traub conjecture given in [4]. The modification techniques employed involved approximation of the function derivatives in the HM with divided difference operator, a polynomial function approximation and the modified Wu function approximation in [17]. These informed the formation of two families of methods that that are optimal and do not or require function derivative evaluation. The both families do not breakdown when f(·) ≈ 0 as in the case with the HM and many existing modified HM. From the convergence investigation carried out on the methods, the sequence of approximations produced by the methods, converged to solution of nonlinear equation with order four. The implementation of the methods was illustrated and numerical results obtained were compared with that of some recently developed methods.

    Keywords: Iterative Method, Householder Method, Derivative Free, Optimal Order
  • منیژه حسن آبادی، اسدالله محمود زاده وزیری، امین جاجرمی*

    این مقاله ارائه دهنده ی یک روش تکراری برای حل مسائل کنترل بهینه ی گسسته شامل سیستم های به هم متصل غیرخطی می باشد. با این روش، مساله ی مقدار مرزی گسسته و به هم متصل غیرخطی، بدست آمده از شرایط لازم بهینگی، به دنباله ای از مسائل مقدار مرزی گسسته ی خطی نامتغیر با زمان تبدیل می شود. همچنین، مساله ی مقدار مرزی خطی در هر تکرار از روش پیشنهادی شامل چندین زیرمسئله ی خطی جدا از هم بوده که بصورت موازی و مستقل از هم قابل حل می باشند. حل مسائل مذکور با استفاده از تکنیک های متداول یافتن پاسخ معادلات تفاضلی خطی منجر به قانون کنترل بهینه به فرم سری با همگرایی یکنواخت می گردد. بعلاوه، یک رویکرد کاربردی برای تعمیم کنترل بهینه ی طراحی شده به فرم فیدبک حالت ارائه می شود. در ادامه، پیاده سازی روش پیشنهادی با طراحی یک الگوریتم تکراری با دقت بالا و پیچیدگی محاسباتی کم انجام می شود بطوری که قانون کنترل زیر بهینه تنها با تعداد کمی تکرار از این الگوریتم حاصل می شود. در نهایت، کارایی این روش با شبیه سازی و حل چند مثال عددی نشان داده می شود.

    کلید واژگان: سیستم های به هم متصل غیرخطی، کنترل بهینه، معادلات گسسته، روش تکراری
    Manijeh Hasanabadi, Asadollah Mahmoudzadeh Vaziri, Amin Jajarmi *

    This article introduces an iterative method for solving discrete optimal control problems involving interconnected nonlinear systems. Using this approach, the discrete and coupled nonlinear boundary value problem (BVP) obtained from the necessary optimality conditions transforms into a sequence of linear time invariant BVPs. Furthermore, the linear BVP at each iteration of the proposed method consists of several decoupled sub-problems, which can be solved in parallel and are unrelated to each other. The solution of these problems, employing common techniques for solving linear difference equations, leads to an optimal control law in a converging series form with uniform convergence. Moreover, a practical approach is presented to extend the designed optimal control to a feedback form. Subsequently, the implementation of the proposed method involves the design of a highly accurate iterative algorithm with low computational complexity, ensuring that the suboptimal control law is obtained with a minimal number of iterations. Finally, the efficacy of this technique is demonstrated through simulation and the solution of various numerical examples.

    Keywords: Nonlinear Interconnected Systems, Optimal Control, Discrete Equations, Iterative Method
  • حمید اسمعیلی*

    در این مقاله به معرفی یک تجزیه ماتریسی مهم و پرکاربرد با نام تجزیه قطبی می پردازیم که تعمیم نمایش قطبی اعداد مختلط به ماتریس های مختلط است. چندین کاربرد مهم تجزیه‏ قطبی ماتریسی را در زمینه های مختلف بیان می کنیم. همچنین، بعضی از روش های تکراری را برای محاسبه تجزیه قطبی ماتریسی ذکر کرده و مرتبه همگرایی آن ها را بیان می کنیم.

    کلید واژگان: تجزیه ماتریسی، تجزیه قطبی، روش تکراری، مرتبه‏ همگرایی
    H. H. Esmaeili *

    In this article, an important and widely used matrix decomposition is introduced. This decomposition, named the matrix polar decomposition, is actually a generalization of the polar representation of complex numbers to matrices. Several important applications of matrix polar decomposition in various fields are considered. Also, some iterative methods for computing the matrix polar decomposition and their order of convergence are mentioned.

    Keywords: matrix decomposition, polar decomposition, iterative method, order of convergence
  • Hassan Khandani *
    We propose an algorithm that estimates the real roots of differentiable functions on closed intervals. Then, we extend this algorithm to real differentiable functions that are dominated by a polynomial. For each starting point, our method converges to the nearest root to the right or left hand side of that point. Our algorithm can look for missed roots as well and theoretically it misses no root. Furthermore, we do not find the roots by randomly chosen initial guesses. The iterated sequences in our algorithms converge linearly. Therefore, the rate of convergence can be accelerated considerably to make it comparable to Newton-Raphson and other high-speed methods. We have illustrated our algorithms with some concrete examples. Finally, the pseudo-codes of the related algorithms are presented at the end of this manuscript.
    Keywords: Krasnoselskii sequence, iterative Method, Newton-Raphson method, root estimation, real function
  • M. Rezaiee-Pajand *, A. Arabshahi, N. Gharaei-Moghaddam
    This study is aimed at performing a comprehensive numerical evalua-tion of the iterative solution techniques without memory for solving non-linear scalar equations with simple real roots, in order to specify the most efficient and applicable methods for practical purposes. In this regard, the capabilities of the methods for applicable purposes are be evaluated, in which the ability of the methods to solve different types of nonlinear equations is be studied. First, 26 different iterative methods with the best performance are reviewed. These methods are selected based on performing more than 46000 analyses on 166 different available nonlinear solvers. For the easier application of the techniques, consistent mathematical notation is employed to present reviewed approaches. After presenting the diverse methodologies suggested for solving nonlinear equations, the performances of the reviewed methods are evaluated by solving 28 different nonlinear equations. The utilized test functions, which are selected from the re-viewed research works, are solved by all schemes and by assuming different initial guesses. To select the initial guesses, endpoints of five neighboring intervals with different sizes around the root of test functions are used. Therefore, each problem is solved by ten different starting points. In order to calculate novel computational efficiency indices and rank them accu-rately, the results of the obtained solutions are used. These data include the number of iterations, number of function evaluations, and convergence times. In addition, the successful runs for each process are used to rank the evaluated schemes. Although, in general, the choice of the method de-pends on the problem in practice, but in practical applications, especially in engineering, changing the solution method for different problems is not feasible all the time, and accordingly, the findings of the present study can be used as a guide to specify the fastest and most appropriate solution technique for solving nonlinear problems.
    Keywords: Nonlinear scalar equations, Iterative method, Efficiency index, order of convergence, Initial guess, Function evaluation
  • N. Aghazadeh, Gh. Ahmadnezhad, Sh. Rezapour*

    The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is effective and appropriate for obtaining the numerical solution of the timefractional Modified Camassa-Holm equation and Time fractional Modified Degasperis-Procesi equation.

    Keywords: Fractional differential equation, Haar wavelet, Operational matrices, Iterative method, Sylvester equation
  • Vali Torkashvand *
    The current research develops a derivative-free family without memory methods. The proposed method consisting of two steps and one parameter for solving nonlinear equations is brought forward.\,The basin of attraction of the proposed methods has investigated using different weight functions.\,Numerical examples are experimented with to check the performance of the proposed schemes. Furthermore, the theoretical order of convergence is confirmed on the experiment work.
    Keywords: Iterative method, Convergence order, Basin of attraction, Nonlinear equation
  • O. Ogbereyivwe *, O. Izevbizua
    In this manuscript, for approximation of solutions to equations that are nonlinear, a new class of two-point iterative structure that is based on a weight function involving two converging power series, is developed. For any method constructed from the developed class of methods, it requires three separate functions evaluation in a complete iteration cycle that is of order four convergence. Also, some well-known existing methods are typical members of the new class of methods. The numerical test on some concrete methods derived from the class of methods indicates that they are effective and competitive when employed in solving a nonlinear equation.
    Keywords: Newton method, Iterative method, Power series, weight function
  • Shamshad Husain, Mubashshir Khairoowala *, Mohd Asad
    The main objective of this paper is to introduce and study a new type of iterative method to approximate a common solution of split variational inclusion problem and a finite family of fixed point problems in real Hilbert spaces. Furthermore, we show that the sequence generated by the proposed iterative method converges strongly to a common solution to these problems. The method and results presented in this paper extend and unify some recent known results in this field. Finally, a numerical example is used to demonstrate the convergence analysis of the sequences generated by the iterative method.
    Keywords: Averaged mapping, fixed point problem, strong convergence, iterative method
  • Manochehr Kazemi, MohammadReza Doostdar, Morteza Ghorbani

    In the present paper, we propose a numerical method based on the combination of the fixed point method and quadrature formula for solving two-dimensional nonlinear Fredholm integral equations of the second kind. Using uniform and partial modulus of continuity, the error estimation is given. Also, the numerical stability with respect to the choice of the first iteration is proved. Moreover, the accuracy of the method and the correctness of the theoretical results are shown by some examples.

    Keywords: Integral equations, Iterative method, Modulus of continuity, Midpoint formula
  • Vahid Samadpour Khalifeh Mahaleh *, Reza Ezati
    In this research, we investigate the fuzzy integral equations related to traffic flow. Using the Banach fixed point theorem, we prove the existence and uniqueness of the solution for such equations. Using the Picard iterative method, we obtain the upper bound for an accurate and approximate solution. Finally, we obtain an error estimation between the exact solution and the solution of the iterative method. Example shows the applicabilityof our results.
    Keywords: Fuzzy integral equations, traffic flow, iterative Method
  • Raziyeh Erfanifar *
    In this paper, a third order convergent method for finding the Moore-Penrose inverse of a matrix is presented and analysed. Then, we develop the method to find Drazin inversion. This method is very robust to find the Moore-Penrose and Drazin inverse of a matrix. Finally, numerical examples show that the efficiency of the proposed method is superior over other proposed methods.
    Keywords: Moore-Penrose inverse, Iterative method, Third-order convergence
  • مظفر رستمی، طاهر لطفی*، علی برهمند

    در این مقاله، کلاس جدیدی از معادلات مقدار قدر مطلقی به صورت زیر را مطالعه می کنیم: Ax-B|x|-b=o, (B≠I, σ_"max" (|B|)<σ_"min" (A)) در این کلاس جدید مقادیر منفرد ماتریس قدر مطلق Bکمتر از مقادیر منفرد ماتریسAاست و ماتریسBمنحصرا همانی نمیباشدو بخاطر همین دلیل قدرت انتخابمان وسیعتر از دیگر روش ها میباشدو همچنین کلیه ماتریس ها دلخواه میباشندو همچنین این کلاس جزء مسایل ان پی سخت محسوب میشود.کلاس جدید معادلات مقدار قدر مطلقی را با استفاده از روش نیوتن تعمیم یافته حل می کنیم و همچنین همگرایی و پایداری عددی کلاس جدید را بررسی می کنیم. همچنین با تست مثال های عددی، کارایی و موثر بودن روش حل برای کلاس جدید با دیگر کارهایی که انجام شده است از جمله روش لطفی و زینلی و روش منگسرین و روش خاکسارمورد بررسی واقع شده است.بجز این روش و روش لطفی و زینلی که دارای همگرایی مرتبه دوم هستند بقیه روش ها دارای همگرایی خطی میباشند.

    کلید واژگان: سیستم های غیرخطی، معادله ی مقدار قدرمطلقی، روش تکرار، پایداری عددی، مرتبه ی همگرایی
    Mozafar Rostami, Taher Lotfi *, Ali Berahmand

    In this paper, a new class of absolute value equations is studied as follows:Ax-B|x|-b=o, ( B≠I, σ_"max" (|B|)<σ_"min" (A) ), This new class of absolute value equations, the single value absolute matrix B is less than the single value matrix A and the matrix B is not exclusively the identity matrix..Therfore the power of choice is wider than other methods of the absolute value equations and all matrices are arbitrary and this new class of absolute value equation is the NP hard problem..We solve this new class using a generalized Newton method and also convergence and numerical stability. Also, by testing the numerical examples of the efficiency and effectiveness of the solution method for the new class, it has been studied with other works that have been done including Lotfi and Zainali and Mangasarain and Khaksars method.Eceptthis new class and Lotfi and Zainali method are quadratic convergence, the rest methods are linear convergence.

    Keywords: Non-linear systems, absolute value equation, Iterative method, numerical stability, convergence order
  • Manochehr Kazemi *, MohammadReza Doostdar

    In this work, solving non-linear two-dimensional Hammerstein integral equations is considered by an iterative method of successive approximation. This method is an efficient approach based on a combination of the quadrature formula and the successive approximations method. Also, the convergence analysis and the numerical stability of the suggested method are studied. Finally, to survey the accuracy of the present method, some numerical experiments are given.

    Keywords: fixed point theorem, Hammerstein integral equations, Quadrature formula, Iterative method
  • Sourav Shil, Hemant Nashine *

    In this chapter, we investigate the global attractivity of the recursive sequence ${mathcal{U}_n} subset mathcal{P}(N)$ defined by[mathcal{U}_{n+k} = mathcal{Q} + frac{1}{k} sum_{j=0}^{k-1} mathcal{A}^* psi(mathcal{U}_{n+j}) mathcal{A}, n=1,2,3ldots,]where $mathcal{P}(N)$ is the set of $N times N$ Hermitian positive definite matrices, $k$ is a positive integer,$mathcal{Q}$ is an $N times N$ Hermitian positive semidefinite matrix, $mathcal{A}$ is an $N times N$ nonsingular matrix, $mathcal{A}^*$ is the conjugate transpose of $mathcal{A}$ and $psi : mathcal{P}(N) to mathcal{P}(N)$ is a continuous. For this, we first introduce $mathcal{FG}$-Prev{s}i'c contraction condition for $f: mathcal{X}^k to mathcal{X}$ in metric spaces and study the convergence of the sequence ${x_n}$ defined by[x_{n+k} = f(x_n, x_{n+1}, ldots, x_{n+k-1}), n = 1, 2, ldots]with the initial values $x_1,ldots, x_k in mathcal{X}$. We furnish our results with some examples throughout the chapter. Finally, we apply these results to obtain matrix difference equations followed by numerical experiments.

    * The formulas are not displayed correctly

    Keywords: fixed point approximation, iterative method, matrix difference equation, equilibrium point, global attractivity
  • Mehdi Najafi-Kalyani*, Fatemeh P. A. Beik

    Recently, Zhang et al. [Applied Mathematics Letters 104 (2020) 106287] proposed a preconditioner to improve the convergence speed of three types of Jacobi iterative methods for solving multi-linear systems. In this paper, we consider the Jacobi-type method which works better than the other two ones and apply a new preconditioner. The convergence of proposed preconditioned iterative method is studied. It is shown that the new approach is superior to the recently examined one in the literature. Numerical experiments illustrate the validity of theoretical results and the efficiency of the proposed preconditioner.

    Keywords: Iterative method, multi-linear system, strong M-tensor, preconditioning
  • منوچهر کاظمی*

    در این مقاله، یک الگوریتم تکرار عددی بر اساس ترکیب روش تقریبات متوالی و قاعده کوادراتور برای حل معادلات انتگرالی غیر خطی ولترای دو بعدی ارایه شده است. این الگوریتم از قاعده ذوزنقه برای توابع لیپ شیتز بکار رفته در هر گام تکرار استفاده میکند. آنالیز همگرایی و برآورد خطای روش اثبات شده است. در پایان، دو مثال برای نشان دادن دقت روش پیشنهادی آورده شده است.

    کلید واژگان: معادلات انتگرالی غیر خطی دو بعدی، قرمول ذوزنقه، روش تکرار، تقریبات متوالی
    Manochehr Kazemi *

    In this paper, a numerical iterative algorithm based on combination of the successive approximations method and the quadrature formula for solving two-dimensional nonlinear Volterra integral equations is proposed. This algorithm uses a trapezoidal quadrature rule for Lipschitzian functions applied at each iterative step. The convergence analysis and error estimate of the method are proved. Finally, two numerical examples are presented to show the accuracy of the proposed method.

    Keywords: Two-dimensional nonlinear integral equations, Trapezoidal cubature formula, Iterative method, Successive approximations
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال