cuckoo algorithm
در نشریات گروه فنی و مهندسی-
Journal of Future Generation of Communication and Internet of Things, Volume:3 Issue: 1, Jan 2024, PP 1 -9
The Internet of Things (IoT) refers to the connection of various devices to each other via the internet. Conceptually, the IoT can be defined as a dynamic, self-configuring network infrastructure based on standards and participatory communication protocols. The main goal of the IoT is to lead towards a better and safer community. However, one of the fundamental challenges in developing the IoT is the issue of security, and intrusion detection systems are one of the main methods to create security in the IoT. On the other hand, Convolutional Neural Network (CNN), with its specific features, is one of the best methods for analyzing network data. This network is a type of deep neural network composed of multiple layers that can ultimately reduce the dimensions of features. Additionally, the cuckoo algorithm has parameters required for configuration in the initial search, which are very few and can naturally and efficiently cope with multi-state problems. In this paper, a new method for intrusion detection in the IoT using CNN and feature selection by the cuckoo algorithm is presented. Simulation results indicate the satisfactory performance of the proposed method.
Keywords: Internet Of Things, Intrusion Detection, Convolutional Neural Network, Cuckoo Algorithm, Dimensionality Reduction -
Journal of Future Generation of Communication and Internet of Things, Volume:2 Issue: 4, Oct 2023, PP 1 -9
The Internet of Things (IoT) refers to the connection of various devices to each other via the internet. Conceptually, the IoT can be defined as a dynamic, self-configuring network infrastructure based on standards and participatory communication protocols. The main goal of the IoT is to lead towards a better and safer community. However, one of the fundamental challenges in developing the IoT is the issue of security, and intrusion detection systems are one of the main methods to create security in the IoT. On the other hand, Convolutional Neural Network (CNN), with its specific features, is one of the best methods for analyzing network data. This network is a type of deep neural network composed of multiple layers that can ultimately reduce the dimensions of features. Additionally, the cuckoo algorithm has parameters required for configuration in the initial search, which are very few and can naturally and efficiently cope with multi-state problems. In this paper, a new method for intrusion detection in the IoT using CNN and feature selection by the cuckoo algorithm is presented. Simulation results indicate the satisfactory performance of the proposed method.
Keywords: Internet Of Things, Intrusion Detection, Convolutional Neural Network, Cuckoo Algorithm, Dimensionality Reduction -
This paper aims to study the appropriate data mining method to extract the rules from a data set and examining the benefits of using the cuckoo algorithm to extract association rules and compare the execution time of the cuckoo algorithm and genetic algorithm (GA). Therefore, an algorithm is proposed that includes two parts: preprocessing and mining. The first part presents the procedures related to the calculation of cuckoo fit values and in the second part of the algorithm, which is the main achievement of this research. Support and confidence The best position can show the least confidence and support.These mining results can be used to continue mining the association rules. The proposed algorithm is based on the cuckoo search. It hides the sensitive relationship rules with a lower time cost and, at the same time, controls the peripheral effects of non-sensitive rules in a better way. This aim is achieved using recurring to the objective function. The GA is set to be the evaluation criterion to show the prominence of the proposed method. In this method, we compare the speed of the cuckoo algorithm with the genetic algorithm, which uses genetic evolution as a problem-solving model. In general, it is an algorithm based on repetition, most of its parts are selected as random processes, and these algorithms are part of the fitting function. It was chosen as a criterion and we paid .It is scientifically proven that the cuckoo algorithm outperforms the GA in the execution time.Keywords: Association rules mining, Genetic Algorithm (GA), cuckoo algorithm, sensitive relationship, non-sensitive relationship, Data mining, Association rules, Dataset, time complexity, Performance Improvement
-
Optimization of weighting-based approach to predict and deal with cold start of web recommender systems using cuckoo algorithmJournal of Advances in Computer Engineering and Technology, Volume:7 Issue: 2, Spring 2021, PP 137 -146Recommending systems are systems that, by taking limited information from the user and features such as what the user has searched for in the past and what product they have rated, can correctly identify the user and the desired items Offer the user. The user's desired items are suggested to him through the user profile. In this research, a new method is presented to recommend the user's interests in the form of the user's personalized profile. The way to do this is to use other users' searched information in the form of a database to recommend to new users. The procedure is that we first collect a log file from the items searched by users, then we pre-process this log file to remove the data from the raw state and clean it. Then, using data weighting and using the score function, we extract the most searched items of users in the past and provide them to the user in the form of a recommendation system based on participatory filtering. Finally, we use our data using an algorithm. We optimize the cuckoo that this information can be of interest to the user. The results of this study showed 99% accuracy and 97% frequency, which can to a large extent correctly predict the user's favorite items and pages and start with the problem that is the problem of most recommender systems To confront.Keywords: Recommender system, Weighting, Cold Start, page prediction, Cuckoo algorithm, data mining
-
Software-Defined networks (SDNs) are a new generation of computer networks that have eliminated many of the problems of traditional networks. These networks use a three-tier architecture in which the physical layers, controller, and management are located at different levels. This new architecture has made the network very dynamic, and many of the previous problems in the network have been solved. As the size of the network increases, using a controller across the network will cause issues such as increasing the average latency between the switches and the controller, as well as forming a bottleneck in the controller. For this reason, it is recommended to use multiple physical controllers on the control plane. Due to the cost of purchasing and maintaining the controller, it is necessary to solve the mentioned problem with the least controllers. The question is, to achieve a goal such as reducing latency to an acceptable threshold, at least how many controllers are needed, where the controllers should be located, and which switches should be monitored by which controller? Since this is an NP-Hard problem, methods based on meta-heuristic algorithms can be effective in solving it. In this article, we have solved the problem of controller placement in software-based networks to reduce latency using the cuckoo meta-heuristic algorithm. The simulation results show that the efficiency of our proposed method is between 16 to 70 percent better than the method proposed by the PSO algorithm.
Keywords: Software-Defined Networks, Controller, Controller Placement, Delay, Cuckoo Algorithm -
Due to the growing number of videos available on the web, it seems necessary to have a system that can extract users' favorite videos from a huge amount of information that is increasing day by day. One of the best ways to do this is to use referral systems. In this research, a method is provided to improve the recommender systems in the field of film recommendation to the user. In this research, DBSCAN clustering algorithm is used for data clustering. Then we will optimize our data using the cuckoo algorithm, then the genetic algorithm is used to predict the data, and finally, using a recommender system based on participatory refinement, a list of different movies that can be of interest to the user is provided. The results of evaluating the proposed method indicate that this recommender system obtained a score of 99% in the accuracy of the system and a score of 95% in the call section Suggest the user's favorite videos correctly to the user.Keywords: recommender system, DBSCAN algorithm, cuckoo algorithm, Genetic Algorithm, participatory filtering
-
تخمین و برآورد معیارها یک فعالیت حیاتی در پروژه های نرم افزاری محسوب می شود. به طوری که تخمین تلاش در مراحل اولیه توسعه نرم افزار، یکی از مهم ترین چالش های مدیریت پروژه های نرم افزاری است. تخمین نادرست می تواند منجر به شکست پروژه گردد. لذا یکی از فعالیت های اصلی و کلیدی در توسعه موثر و کارآمد پروژه های نرم افزاری تخمین دقیق هزینه های نرم افزار است. ازاین رو در این پژوهش دو روش به منظور تخمین تلاش در پروژه های نرم افزاری ارایه شده است، که در این روش ها سعی شده با تجزیه وتحلیل محرک ها و استفاده از الگوریتم های فرا ابتکاری و ترکیب با شبکه عصبی راهی برای افزایش دقت در تخمین تلاش پروژه های نرم افزاری ایجاد شود. روش اول تاثیر الگوریتم فاخته جهت بهینه سازی ضرایب تخمین مدل کوکومو و روش دوم به صورت ترکیبی از شبکه عصبی و الگوریتم بهینه سازی فا خته جهت افزایش دقت برآورد تلاش توسعه نرم افزار ارایه شده است. نتایج بدست آمده روی دو پایگاه داده واقعی نشان دهنده عملکرد مطلوب روش ارایه شده در مقایسه با سایر روش هاست.
کلید واژگان: الگوریتم فاخته، تخمین هزینه، شبکه عصبی، کوکوموIt is regarded as a crucial task in a software project to estimate the criteria, and effort estimation in the primary stages of software development is thus one of the most important challenges involved in management of software projects. Incorrect estimation can lead the project to failure. It is therefore a major task in efficient development of software projects to estimate software costs accurately. Therefore, two methods were presented in this research for effort estimation in software projects, where attempts were made to provide a way to increase accuracy through analysis of stimuli and application of metaheuristic algorithms in combination with neural networks. The first method examined the effect of the cuckoo search algorithm in optimization of the estimation coefficients in the COCOMO model, and the second method was presented as a combination of neural networks and the cuckoo search optimization algorithm to increase the accuracy of effort estimation in software development. The results obtained on two real-world datasets demonstrated the proper efficiency of the proposed methods as compared to that of similar methods.
Keywords: Cocomo, Cost estimation, Cuckoo algorithm, neural network -
تنظیم پارامترهای الگوریتم های فراابتکاری در عملکرد آنها بسیار موثر می باشد و معمولا به صورت تجربی انجام می شود که بسیار زمان بر است. در این پژوهش یک روش ترکیبی جهت انتخاب پارامترهای بهینه الگوریتم های فراابتکاری ارایه شده است. روش پیشنهادی ترکیبی از روش های تحلیل پوششی داده ها و سطح پاسخ می باشد و DSM نامیده می شود. در واقع این روش قابل استفاده برای بهینه سازی مسایل چند هدفه می باشد و مزیت اصلی آن ایجاد و بهینه سازی یک رویه ی پاسخ کارایی به جای بهینه سازی چندین رویه پاسخ خروجی ها می باشد، همچنین علاوه بر بهینه سازی پارامترها به صورت هم زمان به بیشینه سازی کارایی نیز می پردازد. در این پژوهش از روش پیشنهادی DSM جهت تنظیم پارامترهای الگوریتم بهینه سازی فاخته برای بهینه سازی توابع استاندارد و آزمایشی آکلی و راستریگین استفاده شده است. در روش ترکیبی DSM، ابتدا مقدار کارایی با استفاده از تحلیل پوششی داده ها برای هر مجموعه از پارامترهای الگوریتم فراابتکاری محاسبه می گردد، سپس رویه پاسخ برای کارایی بر حسب پارامترهای الگوریتم فراابتکاری با استفاده از روش سطح پاسخ تعیین می گردد. در نهایت با بهینه سازی رویه کارایی مقادیر بهینه پارامترهای الگوریتم فاخته بدست می آید. به منظور اعتبارسنجی نتایج حاصله از روش پیشنهادی با روش مشابه مقایسه گردیده است. نتایج نشان دهنده عملکرد بهتر الگوریتم فرابتکاری با توجه به زمان حل، تعداد تکرارها و دقت تابع بهینه سازی نسبت به سایر روش های مشابه است.
کلید واژگان: الگوریتم های فراابتکاری، تنظیم پارامتر، الگوریتم فاخته، روش سطح پاسخ، تحلیل پوششی داده هاParameters of meta-heuristic algorithms are very effective in their performance and are usually done experimentally, which is very time-consuming. In this research, a hybrid method for selecting the optimal parameters of meta-heuristic algorithms is presented. The proposed method is a combination of data envelopment analysis methods and response surface methodology and is called DSM. In fact, this method can be used to optimize multi-objective problems and its main advantage is to create and optimize one performance response procedure instead of optimizing multiple output response procedures. In addition to optimizing parameters, it also simultaneously maximizes efficiency. In this research, the proposed DSM method has been used to adjust the parameters of the cuckoo optimization algorithm to optimize the standard and experimental Aklay and Rastrigin functions. In the hybrid DSM method, first, the efficiency value is calculated using data envelopment analysis for each set of meta-heuristic algorithm parameters, then the response procedure for performance is determined according to the meta-heuristic algorithm parameters using the response surface methodology. Finally, by optimizing the efficiency surface, the optimal values of the cuckoo algorithm parameters are obtained. In order to validate, the results of the proposed method have been compared with a similar method. The results show better performance of the hybrid algorithm in terms of solution time, number of iterations, and accuracy of the optimization function compared to other similar methods.
Keywords: Meta-heuristic algorithms, parameter setting, Cuckoo algorithm, Response surface method, Data Envelopment Analysis -
بالا بودن هزینه و زمان اجرای پروژه ضرورت بکارگیری بهینه سازی را در صنعت پل سازی ضرورت می بخشد؛ افزون بر بهره جویی از آیین نامه در هنگام طراحی، بهینه سازی سبب کاهش چشمگیر مواد مصرفی شامل فولاد، آرماتور و بتن و همچنین صرفه جویی در زمان انجام پروژه می شود. در این مقاله به بررسی عامل های موثر در بهینه سازی پرداخته است. نخست، با تعریف اندازه های هندسی مقطع، مقاومت بتن، محل و شمار کابل های پیش تنیدگی به عنوان متغیر و بهره جویی از الگوریتم بهینه سازی فاخته، بهترین اندازه ها برای متغیرها انتخاب و بهترین مقطع با رعایت دستورهای آیین نامه ای برپایه دو آیین نامه آشتو 2015-LRFD و استاندارد 2002 با هم سنجیده شده اند. از نتایج پژوهش می توان به عدم رابطه مستقیم کمینگی وزن و طرح اقتصادی بدلیل تاثیر سه عامل بتن، فولاد و کابلهای پیش تنیده و همچنین تاثیر بهره جویی از بتن با مقاومت بالا در دهانه های بلند اشاره کرد. در آخر برای مقایسه تاثیر طول دهانه، بهینه سازی بالا برای دهانه های 30 تا 70 متر و با بهره جویی از آیین نامه های ذکر شده انجام و نتایج با هم سنجش شده است.
کلید واژگان: بهینه سازی، عرشه پل بتنی، لگوریتم فاخته، آیین نامه آشتو LRFD، آشتواستانداردThe high cost and time of implementation of the bridgeworks necessitate the optimization in the structural design. The optimization can extensively reduce the used steel, reinforcement, concrete and the time of doing project. In this study the effect of design elements in optimization of a bridge have been investigated. By definition of cross section geometry, strength of material, location and number of pre-stressing cables as variable and also using Cuckoo algorithm, the best value of variables are selected and the best geometry of cross area is choice. These variables in fact are calculated based on two regulations AASHTO LRFD-2015 and standard 2002 and the results are compared. The results show that the weight minimalist and economic plan are not depended directly because of the effect of concrete, steel and pre-stressed cables and also the high strength concrete used in long bridge span. Finally, for comparison of the bridge span effect, the optimization is carried out for different lengths from 30 to 70 based on the pointed regulations in above and the results are compared
Keywords: Optimization, Bridge deck, concreat, prestressed, Cuckoo algorithm -
International Journal of Supply and Operations Management, Volume:5 Issue: 1, Winter 2018, PP 66 -80
In this study, an efficient logistics network was designed to optimize both time and cost as the most effective factors using a mathematical model (two-objective fuzzy optimization) in a reverse logistics system. This paper attempted to determine value of goods sent between return products processing centers in any time period, in such a way to minimize total cost and time of delay within supply chain. The fuzzy approach was adopted in order to consider uncertainty in reverse logistics network. The validity of model was measured through a model proposed by Azar Resin Co and then implemented and solved by GAMS software. According to previous studies and implementation of model at smaller scale, the problem revolved around designing NP-hard logistics network. Hence, exact methods cannot solve these problems on large scale, for which Cuckoo algorithm was considered. In order to validate the newly proposed algorithm, results were compared against the exact solution. The results suggested that the proposed Cuckoo algorithm was sufficiently accurate to solve the problem and achieve values similar to exact solution.
Keywords: Reverse logistics, Optimization, Fuzzy, Cuckoo algorithm, Mixed integer linear programing (MILP) -
پایگاه داده تحلیلی مخزنی از اطلاعات یکپارچه شده است که از منابع مختلف جمع آوری می شود. در پایگاه داده تحلیلی داده های استخراج شده از منابع مختلف، به فرم دید ذخیره می شوند؛ بنابراین دیدها باید نگهداری شوند و در هنگام تغییر منابع داده، دیدها نیز به روز شوند. از آن جایی که افزایش به روزرسانی ها ممکن است سربار و هزینه زیادی داشته باشد، ضروری است که به روزرسانی دیدها با دقت بالایی صورت گیرد. الگوریتمی که در این مقاله ارائه می شود، ترکیب یک روش گروه بندی، با الگوریتم فراابتکاری فاخته است که باعث کاهش زمان نگهداری دید و در نتیجه افزایش سرعت نگهداری دید افزایشی می شود. الگوریتم بهینه سازی فاخته با یک جمعیت اولیه آغاز می شود. تلاش برای زنده ماندن این فاخته ها اساس الگوریتم بهینه سازی است. نتایج پیاده سازی نشان می دهد که الگوریتم فاخته در مقایسه با روش های قبلی از سرعت بالاتری به منظور به روزرسانی دید افزایشی برخوردار است.کلید واژگان: پایگاه داده تحلیلی، الگوریتم فاخته، جستجوی تصادفی، درخت دلتای بهینه، نگهداری افزایشی دیدData warehouse is a repository of integrated data that is collected from various sources. Data warehouse has the capability to maintain data from various sources in its view form. So the view should be maintained and during changes of the sources they should also be updated. Since the increase in updates may cause costly overhead, therefore it is necessary to update views with high accuracy. The algorithm presented in this paper is the combination of a grouping approach with Cuckoo heuristic Algorithm that reduces maintenance time of views and thus speed up maintenance time. Cuckoo optimization algorithm begins with an initial population. Trying to survive of the Cuckoo makes the base for optimization algorithm. The results show that the Cuckoo algorithm implementation compared with previous methods is faster in order to update its incremental view.Keywords: data warehouse, Cuckoo algorithm, random search, optimization delta tree, incremental view maintenance
-
This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the objective function has been defined. This function consists of three terms i.e. losses, construction cost and the volume of the motor which should be minimized simultaneously. Three algorithms i.e. cuckoo, genetic and particle swarm have been studied in this paper. It is noteworthy that, cuckoo optimization algorithm has been used for the first time for brushless DC motor design optimization. A comparative study between the mentioned optimization approaches shows that, cuckoo optimization algorithm has been converged to optimal response in less than 250 iterations and its standard deviation is , while the convergence rate of the genetic and particle swarm algorithms are about 400 and 450 with standard deviations of and , respectively for the case study motor. The obtained results show the best performance for cuckoo optimization algorithm among all mentioned algorithms in brushless DC motor design optimization.Keywords: BLDC motor, Cuckoo algorithm, Objective function, Optimal motor design
-
Optimal Design of PM Synchronous Generator for Aerial Industries Power Supply Using Cuckoo AlgorithmInternational Journal of Research in Industrial Engineering, Volume:3 Issue: 3, Summer 2014, PP 49 -68The Generators used in aerial industries should have the characteristics such as high efficiency, power density and reliability, low weight and volume. Among different generators, permanent magnet synchronous generator adequately satisfied these requirements. In this paper, first the dimensions and other quantities of this generator are calculated through an analytical model. Then using Cuckoo Optimization Algorithm (COA), these quantities are optimized to suit for desirable needs of aerospace systems, in order that the total volume of the generator could be minimized and its efficiency could be maximized. The results of this design for the permanent magnet synchronous generator application in aerospace systems have been satisfactory.Keywords: Cuckoo Algorithm, optimization, Permanent Magnet, synchronous generator, Aerial Industries
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.