e constraint
در نشریات گروه فنی و مهندسی-
Todays, because of waste generation as a result of various human activities, modernization, urbanization and industrialization, waste management and waste collection have become major issues for communities. Also, transferring types of waste together causes risks. So, in this research we investigated and modeled an integrated waste collection network including facility location and vehicle routing decisions. Therefore, a mix-integer nonlinear bi-objective programming model of flexible multi-compartment routing location problem with time window with the aim of reducing the total network cost and harmful effects on the environment is expanded. Where each source node is met by several vehicles, and each node and vehicle have time limitation for service, so queuing time is being considered. Hence, priority for the service of each vehicle is important. Moreover, the model has been converted into an MILP and then solved by GAMS in a small-scale experiment. Since the problem is NP-hard, a Hyper-Heuristic algorithm based on NSGA-II algorithm, NSGA-II and -Constraint method are designed for solving the proposed problem. So, the results of three methods were compared by metric indicators and objective functions. Then, sensitive analysis of important parameters was performed. Finally, the findings show that Hyper-heuristic based on NSGA-II can obtain more and faster convergence and has high performance to NSGA-II and -Constraint method.Keywords: Flexible, Multi Compartment Location, Waste Collection, Mixed Integer Non-Linear Programming, Queuing Time, Hyper-Heuristic, Ε-Constraint
-
در این مقاله، برنامه ریزی توسعه همزمان تولید و انتقال مقید به تاب آوری (RCGTEP) شبکه انتقال در برابر بلایای طبیعی از قبیل زلزله و سیل ارائه می شود. از اینرو طرح پیشنهادی به صورت یک مساله دوهدفه مدل سازی می شود که در یک تابع هدف کمینه سازی هزینه های احداث و بهره بردرای منابع تاب آوری (RSها) و مد نظر است، و در تابع هدف دیگر کمینه سازی انرژی مورد انتظار تغذیه نشده (EENS) در اثر خاموشی سیستم در برابر بلایای طبیعی مذکور فرمول بندی خواهد شد. همچنین طرح پیشنهادی مقید به معادلات پخش توان بهینه AC (AC-OPF)، مدل برنامه ریزی و بهره برداری RSها از قبیل واحدهای تولید، خطوط انتقال مستحکم، ادوات FACTS سری و موازی (SF و PF)، و محدودیت های تاب آوری و پایداری زاویه ای سیستم قدرت در برابر زلزله و سیل در حضور بارهای بحرانی و غیربحرانی می باشد. این استراتژی دارای عدم قطعیت دسترس پذیری RSها در شرایط بلایای طبیعی است، لذا مدل سازی تصادفی برای RCGTEP اتخاذ خواهد شد. در نهایت، نتایج عددی بدست آمده با اجرای استراتژی پیشنهادی برروی شبکه های انتقال استاندارد IEEE تایید کننده قابلیت های این طرح در بهبود همزمان شاخص های اقتصادی، بهره برداری، پایداری زاویه ای و تاب آوری سیستم قدرت است
کلید واژگان: برنامه ریزی توسعه، سیل و زلزله، منابع تاب آوری، قید اپسیلن، شبکه انتقالJournal of New Achievements in Electrical, Computer and Technology, Volume:5 Issue: 1, 2025, PP 96 -104In this paper, the Resilience-Constrained Simultaneous Generation and Transmission Expansion Planning (RCGTEP) of the transmission network against natural disasters such as earthquakes and floods is presented. Therefore, the proposed scheme is modeled as a dual-objective problem, in which one objective function is to minimize the construction and operation costs of the resilient resources (RSs) and is considered, and in the other objective function, the expected energy not fed (EENS) due to the system outage against the aforementioned natural disasters will be formulated. Also, the proposed scheme is constrained by the AC optimal power distribution equations (AC-OPF), the planning and operation model of RSs such as generating units, robust transmission lines, series and parallel FACTS devices (SF and PF), and the resilience and angular stability constraints of the power system against earthquakes and floods in the presence of critical and non-critical loads. This strategy has uncertainty of RS availability under natural disaster conditions, so stochastic modeling will be adopted for RCGTEP. Finally, numerical results obtained by implementing the proposed strategy on IEEE standard transmission networks confirm the capabilities of this scheme in simultaneously improving economic indicators, utilization, angular stability and power system resilience.
Keywords: Development Planning, Floods, Earthquakes, Resilience Resources, Epsilon Constraint, Transmission Network -
This paper addresses the synchronization issue of agents with their respective leaders in each cluster for unknown discrete-time zero-sum graphical games with constrained input. To solve the coupled Hamilton-Jacobi-Isaacs equations under the assumption of unknown dynamics, an adaptive optimal distributed technique based on value iteration heuristic dynamic programming is proposed. An actor-critic framework is employed to approximate the value functions, control policies, and worst-case disturbance policies necessary for implementing the proposed method. Additionally, neural network identifiers are utilized to determine each agent's unknown dynamics. To prevent system instability, a constraint on control inputs is incorporated into the design method. By considering disturbances in the dynamics, the proposed solutions are made robust against unpredictable events, enhancing performance and stability. Furthermore, the closed-loop system's stability is proven. Finally, the theoretical results are validated through simulation outcomes.Keywords: Cluster Synchronization, Discrete-Time Graphical Zero-Sum Games, External Disturbances, Input Constraint, Neural Network, Reinforcement Learning, Unknown Dynamics
-
در مسائل مکان یابی-مسیریابی کمان محور برخلاف مسائل مکان یابی-مسیریابی شناخته شده، تقاضا بر روی کمان قرار دارد و برای برآورده شدن تقاضای مشتریان استفاده از کمان های بدون تقاضا مجاز است. مطالعات محدودی بر روی این مسئله تمرکز داشته اند. در این تحقیق یک مدل برنامه ریزی ریاضی خطی مختلط سه هدفه برای مسئله مکان یابی- مسیریابی کمان محور چنددوره ای تحت شرایط عدم قطعیت ارائه می شود. اهداف مدل از نوع کمینه سازی هزینه، کمینه سازی مقدار ماده حمل شونده در مدت زمان حمل و کمینه سازی زمان انتظار وسیله نقلیه تعریف شده است. رعایت پنجره زمانی، حداقل سازی مقدار ماده حمل شونده در مدت زمان حمل و کنترل میزان ریسک مسیرهای مورداستفاده در یک حد آستانه ای بر اساس شاخص های امنیتی، ریسک جابجایی را نیز به طور غیرمستقیم کاهش می دهد. مدل پیشنهادی با استفاده از مدل برتسیماس و سیم استوار شده و از روش -محدودیت برای حل 22 مسئله استاندارد بر مبنای مدل پیشنهادی استفاده شده است. برای اعتبارسنجی مدل استوار نیز از مدل واقع نمایی استفاده شده است. نتایج نشان می دهد که مدل استوار در سطوح محافظه کاری بالاتر در مقابل مدل قطعی دارای عملکرد بهتری است و افزایش میزان عدم قطعیت در هر سطح از محافظه کاری منجر به افزایش هزینه ها می شود.
کلید واژگان: مکان یابی-مسیریابی کمان محور سه هدفه، بهینه سازی استوار، روش Ε-محدودیت، پنجره زمانی، ریسکIn location-arc routing problems, unlike the well-known locating-routing problems, demand is on the arc and using deadheading arcs is permitted. Few studies have focused on this issue. In this research, a three-objective complex linear mathematical model for the multi-period location-arc routing problem under uncertainty with the time window is presented. The objectives of the model are included in the minimization of cost, cash-in-transit, and vehicle waiting time. The time window, minimizing cash-in-transit, and definition threshold for routes risk based on safety indicators, reduces the transportation risk indirectly. The proposed model is based on Bertsimas and Sim model and the ε-constraint method is used to solve 22 standard problems based on the proposed model. In addition, the robust model is validated with the realization model. The results show that the robust model versus deterministic model has better performs at higher conservatism levels and increases the uncertainty at each level of conservatism leading to higher costs.
Keywords: Three-Objective Location-Arc Routing Problem, Robust Optimization, Ε-Constraint, Time Windows, Risk -
Portfolio selection has been recognized as one of the most significant and challenging problems in financial engineering since Markowitz’s pioneering work on the mean-variance model. This problem centers on the optimal allocation of wealth across a set of assets to maximize returns while minimizing investment risk. While the basic Markowitz mean-variance framework is theoretically elegant and foundational, it has faced criticism from investment practitioners due to its reliance on unrealistic assumptions that limit its practical applicability. Specifically, the traditional model assumes perfect market conditions and neglects real-world constraints, such as the need to limit the number of assets in a portfolio (cardinality), which can significantly reduce its practical applicability. To address these limitations, this paper extends the mean-variance portfolio selection model by incorporating cardinality and floor-ceiling (quantity) constraints. The cardinality constraint ensures that the portfolio includes a specified number of assets, while the floor-ceiling constraint regulates the allocation to each asset, restricting it within predefined bounds. These added constraints transform the classical quadratic optimization problem into a mixed-integer quadratic problem, which necessitates the use of approximation algorithms such as metaheuristic algorithms for efficient and feasible solutions. Although numerous metaheuristic algorithms have been employed to tackle this problem, genetic algorithms have gained prominence due to their balance between solution quality and computational efficiency. However, the standard genetic algorithm is not without its shortcomings, particularly when handling the complexity of constrained portfolio optimization. To overcome these limitations, we propose a novel crossover operator designed to enhance the performance of the genetic algorithm.Keywords: Portfolio Selection Problem, Markowitz' S Mean-Variance Framework, Cardinality Constraint, Genetic Algorithm, Crossover Operator
-
In today's competitive market, manufacturers and service providers are continuously seeking ways to reduce costs and save time to gain a competitive edge. One of the most significant challenges they face is the vehicle routing problem (VRP), which is crucial due to its direct impact on the delivery time of services or products. Efficient vehicle routing not only enhances delivery performance but also optimizes the overall network, resulting in reduced operational costs. This study focuses on evaluating the VRP specifically for trucks while incorporating sustainability indicators into the analysis. The key sustainability indicators considered include social, economic, and environmental aspects. By integrating these indicators, the study aims to address multiple objectives simultaneously: reducing delivery time, minimizing costs, and mitigating the environmental impact of vehicle operations.The primary objective of this research is to minimize overall costs, fuel consumption, and route complexity associated with truck deliveries. Given the growing concern over environmental issues, there is a strong emphasis on improving methods to reduce greenhouse gas (GHG) emissions and streamline logistics processes. The research addresses these concerns by proposing a model that not only aims to enhance operational efficiency but also contributes to environmental protection and social responsibility.To achieve these objectives, the study employs advanced optimization techniques, specifically the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO). These methods are utilized to solve the VRP while balancing the trade-offs between various objectives, such as cost reduction, fuel efficiency, and route optimization.The results of the study indicate that the proposed model successfully improves aspects of environmental protection and social responsibility while simultaneously addressing economic concerns. The integration of sustainability indicators into the vehicle routing problem provides a comprehensive approach to optimizing logistics operations, highlighting the importance of considering environmental and social factors alongside economic performance.Overall, this research contributes to the field by offering a refined model for tackling the VRP, with a focus on sustainability. The findings underscore the potential for optimization algorithms to drive improvements in both operational efficiency and environmental stewardship, ultimately supporting more sustainable and socially responsible practices in the transportation and logistics industry.Keywords: Exchange Locations, Vehicle Routing Problem, Algorithms, Non-Dominated Sorting Genetic Algorithm-II, Multi-Objective Particle Swarm Optimization, Metaheuristic, Time Constraint
-
زنجیره تامین یک محصول شامل تمامی سازمان ها و شرکت هایی است که در فرآیند تهیه، تامین، تولید، توزیع و تحویل آن محصول به مشتری نقش دارند. یکی از مهم ترین ارکان مدیریت زنجیره تامین، هماهنگی این اجزا است. اقلام فسادپذیر که به عنوان کالاهایی پرکاربرد شناخته می شوند، در پژوهش های مربوط به کنترل موجودی جایگاه ویژه ای دارند، زیرا این اقلام با گذر زمان ممکن است فاسد، تبخیر یا تخریب شوند و از این طریق ارزش یا مقدار خود را از دست بدهند. بنابراین، تعیین مقدار و زمان سفارش برای این نوع اقلام اهمیت بسیاری دارد. علاوه بر این، اعضای زنجیره تامین معمولا با محدودیت بودجه مواجه هستند و تولیدکننده بخشی از نقدینگی مورد نیاز خود را در ابتدای تولید از طریق دریافت نسبتی از مبلغ کل سفارش تامین می کند. تعیین این نسبت نیز بسیار حائز اهمیت است. در این تحقیق، یک زنجیره تامین دوسطحی شامل یک عمده فروش و یک تولیدکننده که کالایی فسادپذیر تولیدمی کند، مورد بررسی قرارگرفته است. برای ایجاد هماهنگی و همکاری بلندمدت بین اعضا و حداکثرسازی سود زنجیره تامین، از سازوکار تخفیف استفاده شده است. در این سازوکار، یکی از تخفیف ها بر اساس زمان سفارش و دیگری بر اساس نسبت پیش پرداخت عمل می کند. در نهایت، یک مثال عددی بررسی شده و تحلیل حساسیت بر روی پارامترهای مسئله انجام شده است، نتایج نشان می دهد که با اعمال سازوکار هماهنگی و تعیین مقادیر بهینه برای مقدار سفارش، زمان سفارش و نسبت پیش پرداخت، سود اعضا و کل زنجیره تامین در حالت هماهنگ نسبت به حالت ناهماهنگ افزایش یافته است.کلید واژگان: مدیریت زنجیره تامین، هماهنگی، کالای فسادپذیر، تخفیف، پیش پرداخت، محدودیت بودجهThe supply chain of a product encompasses all organizations and companies involved in the processes of procurement, supply, production, distribution, and delivery of that product to the customer. One of the most critical aspects of supply chain management is the coordination among these elements. Perishable products, which are recognized as widely used items, hold a significant position in inventory control research because these items may deteriorate, evaporate, or degrade over time, leading to a loss of value or quantity. Therefore, determining the order quantity and timing for such products is crucial. Additionally, supply chain members often face budget constraints, and the manufacturer secures part of the required liquidity at the beginning of production by receiving a portion of the total order amount upfront. Determining this portion is also of great importance. In this study, a two-level supply chain, consisting of a wholesaler and a manufacturer producing a perishable product, has been examined. To foster long-term coordination and collaboration among members and to maximize supply chain profit, a discount mechanism has been utilized. This mechanism includes one discount based on order timing and another based on the prepayment ratio. Finally, a numerical example has been analyzed, and sensitivity analysis has been conducted on the problem's parameters. The results demonstrate that by implementing the coordination mechanism and determining the optimal values for order quantity, order timing, and prepayment ratio, the profit of both the members and the entire supply chain increases in the coordinated state compared to the uncoordinated state.Keywords: Supply Chain Management, Coordination, Perishable Product, Discount, Prepayment, Budget Constraint
-
International Journal of Optimization in Civil Engineering, Volume:15 Issue: 1, Winter 2025, PP 15 -37
In this study, the Improved Material Generation Algorithm (IMGA) is proposed to optimize the shape and size of structures. The original Material Generation Algorithm (MGA) introduced an optimization model inspired by the high-level and fundamental characteristics of material chemistry, particularly the configuration of compounds and chemical reactions for generating new materials. MGA uses a Gaussian normal distribution to produce new combinations. To enhance MGA for adapting truss structures, a new technique called Random Chaotic (RC) is proposed. RC increases the speed of convergence and helps escape local optima. To validate the proposed method, several truss structures, including a 37-bar truss bridge, a 52-bar dome, a 72-bar truss, a 120-bar dome, and a 200-bar planar structure, are optimized under natural frequency constraints. Optimizing the shape and size of structures under natural frequency constraints is a significant challenge due to its complexity. Choosing the frequency as a constraint prevents resonance in the structure, which can lead to large deformations and structural failure. Reducing the vibration amplitude of the structure decreases tension and deflection. Consequently, the weight of the structure can be minimized while keeping the frequencies within the permissible range. To demonstrate the superiority of IMGA, its results are compared with those of other state-of-the-art metaheuristic methods. The results show that IMGA significantly improves both exploitation and exploration.
Keywords: Dynamic Constraint, Metaheuristic Algorithms, Truss Optimization, Soft Computing, Natural Frequency Constraints -
با توجه به اهمیت موضوع چیدمان مناسب اجزاء و زیرسیستم ها در سامانه های فضایی به جهت ارضاء الزمات سیستمی کنترلی، حرارتی و مخابراتی، در این مقاله به طراحی جانمایی بهینه یک ماهواره نمونه پرداخته می شود. رعایت قیود کنترل وضعیت که از الزامات اساسی سیستمی ماهواره است در درجه اول به عنوان قید تعریف می شود. سایر الزمات زیرسیستم های ماهواره از جمله قید عدم همپوشانی با توجه به اهمیت و اولویت لحاظ می گردد. پس از تعیین روش مناسب بهینه سازی، تابع هدف و قیود مسئله، الگوریتم بهینه سازی ارائه و پاسخ های بهینه استخراج می گردند. نظر به اهمیت کنترل موضوع سازگاری الکترومغناطیس و پیشگیری از آسیب های مخرب ناشی از آن، طرح سیم بندی مناسب روی طرح های بهینه با رعایت الزامات تعریف شده صورت می پذیرد.
کلید واژگان: ماهواره، طراحی جانمایی، قید کنترلی، قید الکترومغناطیسی، الگوریتم بهینه سازی سازگاری الکترومغناطیسیConsidering the importance of the proper arrangement of components and subsystems in space systems in order to satisfy the control, thermal and telecommunication system requirements, this article deals with the optimal placement design of a sample satellite. Compliance with condition control constraints, which is one of the basic system requirements of the satellite, is primarily defined as constraint. Other requirements of satellite subsystems, including the non-overlapping condition, are taken into account according to importance and priority. After determining the appropriate optimization method, the objective function and the constraints of the problem, the optimization algorithm is presented and the optimal answers are extracted. Due to the importance of controlling the issue of electromagnetic compatibility and preventing destructive damage caused by it, the proper wiring design is done on the optimal designs in compliance with the defined requirements.
Keywords: Satellite, Layout Design, Control Constraint, Electromagnetic Constraint, Optimization Algorithm, Electromagnetic Compatibility -
توسعه استفاده از خودروهای برقی در بخش حمل و نقل، مستلزم تاسیس زیرساخت های شارژ این خودروها مانند ایستگاه های شارژ سریع است. ضمن آنکه برای کاهش آلاینده های ناشی از فعالیت نیروگاه های سوخت فسیلی، باید از منابع انرژی تجدیدپذیر و سیستم های ذخیره ساز انرژی در ایستگاه های شارژ سریع استفاده کرد. در این مقاله، یک مدل خطی آمیخته با عدد صحیح به منظور تعیین ظرفیت منابع انرژی تجدیدپذیر و سیستم ذخیره انرژی باتری در یک ایستگاه شارژ با دو تابع هدف حداقل کردن هزینه های اقتصادی و حداقل کردن انتشار آلاینده ها ارائه شده است. در مدل پیشنهادی، امکان استفاده از منابع تولیدی انرژی تجدیدپذیر بادی و خورشیدی و چهار نوع فناوری باتری شامل اسید سرب، نیکل کادمیوم، لیتیوم یون و سولفور سدیم لحاظ شده است. با توجه به دو تابع هدف متناقض در مدل پیشنهادی، از روش محدودیت اپسیلون برای تعیین پاسخ های بهینه پارتو و از روش استنتاج فازی جهت تعیین پاسخ نهایی استفاده شده است. نتایج مدل پیشنهادی در چهار افق برنامه ریزی متفاوت، مورد بررسی قرار گرفته است. نتایج نشان می دهد که با افزایش اهمیت تابع هدف کاهش آلاینده ها، ظرفیت نصب شده منابع تجدیدپذیر افزایش می یابد.کلید واژگان: انتشار آلاینده ها، ایستگاه شارژ سریع، ذخیره ساز انرژی، محدودیت اپسیلون، منابع انرژی تجدیدپذیرThe development of electric vehicles in the transportation sector requires the establishment of charging infrastructures such as fast charging stations. Besides, in order to reduce the pollutants caused by fossil fuel power plants, renewable energy sources (RESs) and energy storage systems should be integrated with fast charging stations. In this article, a mixed-integer linear programming model is presented to determine the capacity of RESs and battery energy storage system in a charging station, considering two objective functions including the minimization of economic costs and emissions. The proposed model considers the possibility of using wind and solar resources and four types of battery technology including lead-acid, nickel-cadmium, lithium-ion, and sodium-sulfur. Regarding the two contradictory objectives in the proposed model, the epsilon constraint method has been employed to obtain the Pareto front for optimal solutions. Then, the fuzzy satisfying method has been used to determine the final solution. The results of the proposed model have been examined in four different planning horizons. The results show that with the increase in the importance of the objective function of reducing emissions, the installed capacity of renewable resources increases..Keywords: Emission, Energy Storage, Epsilon Constraint, Fast Charging Station, Renewable Energy Sources
-
Journal of Industrial Engineering and Management Studies, Volume:11 Issue: 1, Winter-Spring 2024, PP 1 -18The purpose of this research is to optimize the use of water resources in dams in Khuzestan province. For this purpose, in this research, we seek to optimize the cost and time of sending water to each of the cities from the total dams in Khuzestan province. The model is solved using the deterministic epsilon constraint method and NSGA-II and MOPSO algorithms meta-heuristically. According to the results presented in this research, the water supply from the Balaroud dam to the cities of Ahvaz, Izeh, Abadan, Baghmolk, and Bandar Imam Khomeini has not been determined to be optimal. The same dam sends a certain amount of water to the cities of Andimeshk, Dezful, Shush, Shushtar and Gotvand. The results showed that NSGA-II has a more acceptable performance than the MOPSO algorithm from the point of view of three criteria, and the MOPSO algorithm has a better condition than the NSGA-II algorithm only in terms of the distance to the ideal point. In addition, according to the sensitivity analysis, it has been determined that the increase in water demand can increase the shipping time by 1.9% and the shipping cost by 60%. Therefore, the effect of water demand is more on time and not on cost. Increasing the budget can have an effect on cost and time, which of course has more effect on time than cost.Keywords: Water Management Of Dams, Optimization, Epsilon Constraint, Meta-Heuristic Algorithm
-
این مقاله به بررسی تعقیب ربات رهبر توسط خودرو خودران و مساله اجتناب از برخورد با موانع می پردازد. در این مقاله همانند یک خودرو واقعی، ابعاد هندسی، جرم و گشتاور اینرسی برای خودرو در نظر گرفته شده است. گشتاور فرمان و گشتاور چرخ محرک، دو ورودی کنترل هستند. معادلات دینامیک غیرخطی وسیله نقلیه استخراج شده است. ابتدا الگوریتمی برای تغییر جهت وسیله نقلیه برای تعقیب رهبر پیشنهاد می شود که به منظور قرارگیری جهت خودرو در جهت مناسب برای تعقیب ربات رهبر طراحی شده است. پس از آن مسیر مناسب برای اجتناب از برخورد با موانع ساکن متعدد و تعقیب رهبر ارائه می گردد و سپس از یک کنترل کننده پیش بین مدل غیرخطی برای دنبال کردن مسیر مرجع استفاده می شود. الگوریتم طراحی مسیر بر اساس تئوری باند الاستیک بوده که عملکرد بسیار خوبی برای عدم برخورد با موانع متعدد و تعقیب ربات رهبر دارد. عملکرد سیستم حلقه بسته از طریق شبیه سازی نشان داده شده است. اگرچه خودرو دارای اینرسی است و قیود غیرهولونومیک دارد، شبیه سازی ها نشان می دهند که دو روش طراحی مسیر با طرح کنترل کننده پیش بین مدل به خوبی کار می کند.
کلید واژگان: خودرو خودران، جلوگیری از برخورد با موانع متعدد، قید غیرهولونومیک، طراحی مسیر، کنترل پیش بین مدل غیرخطیThis paper studies the autonomous vehicle leader following and collision avoidance problem. In this paper, like as a real car, geometric dimensions, mass and moment of inertia are considered for the car; steering-wheel and driving-wheel torques are the two control inputs. The nonlinear dynamics equation of the vehicle is derived. At first, an algorithm is proposed for changing the direction of the vehicle to follow the leader, then the suitable path for multiple obstacle avoidance and leader following is proposed, and then a nonlinear model predictive controller (MPC) is used to follow the reference trajectory. The desired trajectory is designed according to the elastic band method which is a powerful method for obstacle avoidance and leader following. The performances of the closed-loop system are illustrated through simulations. During the simulation the vehicle first changes its direction and then follows the leader without colliding with obstacles. Although the vehicle is inertial and non-holonomic in behavior, the simulations show that the two path planning methods with MPC scheme works well. For the future works the authors aim to solve the problem with moving obstacles.
Keywords: Autonomous vehicle, Multiple Obstacle Avoidance, Nonholonomic constraint, Trajectory Planning, Nonlinear Model Predictive Control -
این مقاله به کنترل گام به عقب تطبیقی مقاوم گروه های خودرویی ناهمگن خودران در حضور عیب عملگری، عدم قطعیت مدل، اغتشاش خارجی و با لحاظ قید روی سرعت گروه می پردازد. عیب عملگری به صورت ترکیبی از تضعیف قانون کنترلی و اغتشاش عملگری در نظر گرفته می شود. یک مدل مرتبه سه بر حسب موقعیت برای توصیف حرکت طولی هر خودرو استفاده می شود که در آن، ثابت موتور نامعلوم فرض می شود و اثر اغتشاش دینامیکی نیز لحاظ می گردد. همچنین، ساختار ارتباطی گروه به صورت دو سویه رهبر-پیرو فرض می شود. به کمک روش گام به عقب و در سه مرحله تابع لیاپانوف ساخته می شود: مرحله سرعت، مرحله شتاب و مرحله پایانی. در مرحله اول، خطا به صورت تفاضل وزنی موقعیت هر خودرو با موقعیت مطلوب آن تعریف می شود. سپس به کمک قضیه لیاپانوف، یک قانون کنترل مجازی که متضمن کراندار بودن خطای فاصله است بدست می آید. در مراحل دوم و سوم، خطا به ترتیب برابر تفاضل سرعت و شتاب با کنترلر مجازی مرحله قبل تعریف می شود. در نهایت، یک تابع لیاپانوف که در برگیرنده خطاهای هر سه مرحله و خطای تخمین است تعریف می گردد و به کمک آن، یک قانون کنترلی به گونه ای بدست می آید که دامنه خطای تخمین و خطای فاصله کراندار و در نتیجه گروه خودرو پایدار باشد. شبیه سازی های متعددی برای اعتبارسنجی روش مزبور ارایه خواهند شد.کلید واژگان: عیب عملگری ترکیبی، عدم قطعیت مدل، روش گام به عقب تطبیقی، تابع لیاپانوف، پایداریThis paper deals with the robust-adaptive backstepping control of heterogeneous self-driving vehicle groups in the presence of actuator fault, model uncertainty, and external disturbance concerning group speed constraints. The actuator fault is a combination of descending control law and the actuator disturbance. A third-order dynamical model is utilized to describe the longitudinal motion of each vehicle in which the engine time constant is unknown and the external disturbance is considered. The communication structure is assumed to be bi-directional leader-following. The control design is performed in three levels: speed level, acceleration level, and the final level. At the first level, the error is defined as the difference between the actual position and the desired position of each following vehicle. After that, by employing the Lyapunov theorem, a virtual control law is introduced to make the tracking error bounded. In the second and third levels, the error respectively is defined as the difference between speed and acceleration and the virtual control law of the previous level. Finally, a Lyapunov function involving the state errors of all levels and the estimation errors of the third level is defined and an adaptive control is introduced such that the tracking error and the estimation errors will be bounded. Numerical results are provided to show the merits of this method.Keywords: Combined actuator fault, Parameter uncertainty, Speed constraint, Adaptive backstepping approach, Lyapunov function, Stability
-
صورت کلاسیک مساله «مسیریابی وسیله نقلیه» هزینه حمل ونقل را مربوط به کمان های شبکه می داند، در صورتی که هزینه های اولیه (ثابت) بکارگیری وسیله نقلیه و استخدام راننده جزء هزینه های اصلی حمل ونقل کالا به حساب می آیند. در این مقاله، مدلی برای مساله «مسیریابی وسیله نقلیه» ارایه شده است، که در آن هزینه های اولیه بکارگیری وسیله به صورت مجزا و در کنار سایر هزینه ها کمینه می گردد. این مساله یک مساله با «پیچیدگی بالا» به حساب می آید، و نمی توان آن را در شبکه های درون شهری بزرگ به صورت دقیق و در مرتبه زمانی چندجمله ای حل کرد. بنابراین، برای حل مدل پیشنهادشده از الگوریتم «بهینه سازی اجتماع مورچگان» استفاده شده است. الگوریتم های قبلی بهینه سازی اجتماع مورچگان که برای حل مسیریابی وسیله نقلیه ارایه شده اند، قادر به در نظر گرفتن هزینه های اولیه بکارگیری وسیله به عنوان یک عامل هزینه در تابع هدف نیستند. یکی از نوآوری های این مقاله به اصلاح این الگوریتم برای منظور کردن هزینه های اولیه بکارگیری وسیله معطوف شده است. برای ارزیابی توان مدل پیشنهادشده، شبکه شهر مشهد با 253 ناحیه ترافیکی و یک دپو در منطقه مرکزی شهر، برای بکارگیری مدل روی شبکه واقعی انتخاب شده است. نتایج نشان می دهند که روش حل ارایه شده با سرعت قابل قبول (با زمانی کمتر از 2 ثانیه) به نتایج تقریبی مطلوب همگرا می شود. این در حالی است که حل مدل مذکور با استفاده از نرم افزارهای تجاری موجود ممکن نیست.کلید واژگان: مسیریابی وسیله نقلیه ظرفیت محدودیت، بهینه سازی اجتماع مورچگان، شبکه های بزرگThis paper proposes an integer linear mathematical formulation for Vehicle Routing Problem (VRP), where the capital cost for deploying each vehicle is minimized together with other on-link transportation costs. The model has been formulated as a multi-commodity network flow model with capacity constraints. It is well known that the computational complexity to this type of problems is NP-hard. Thus, the ACO algorithm, which has been known to be a powerful meta-heuristic algorithm for solving VRPs in large networks, has been adapted to solve the problem. Although the ACO algorithm has repeatedly been used to solve the capacitated VRP, it has a drawback that cannot consider the capital cost of each vehicle along with other operational costs of the vehicles (associated with the total distance traveled within a day) in its initial form. More specifically, naturally it assumes that each vehicle returns to the depot if it becomes full or the demand finishes, each met first; this paper seeks to propose an adapted ACO algorithm in which this assumption is released. To assess the capability of the proposed model in large-scale networks, the case study of Mashhad city, consisting of 253 traffic analysis zones and over than 3800 links, has been considered. Results show that the proposed algorithm converges to near-to-optimal solutions within two seconds of cpu time, which is encouraging.Keywords: vehicle routing problem, Capacity Constraint, Ant colony optimization (ACO), Real-world Networks
-
A computational approach is presented to obtain the optimal path of the end-effector for the 10 DOF bipedal robot to increase its load carrying capacity for a given task from point to point. The synthesizing optimal trajectories problem of a robot is formulated as a problem of trajectory optimization. An Iterative Linear Programming method (ILP) is developed for finding a numerical solution for this nonlinear trajectory. This method is used for determining the maximum dynamic load carrying capacity of bipedal robot walking subjected to torque actuators, stability and jerk limits constraints. First, the Lagrangian dynamic equation should be written to be suitable for the load dynamics which together with kinematic equations are substantial for determining the optimal trajectory. After that, a representation of the state space of the dynamic equations is introduced also the linearized dynamic equations are needed to obtain the numerical solution of the trajectory optimization followed by formulation for the optimal trajectory problem with a maximum load. Finally, the method of ILP and the computational aspect is applied to solve the problem of trajectory synthesis and determine the dynamic load carrying capacity (DLCC) to the bipedal robot for each of the linear and circular path. By implementing on an experimental biped robot, the simulation results were validated.
Keywords: Dynamic load, biped robots, optimal trajectory, actuator constraint -
Journal of Industrial Engineering and Management Studies, Volume:10 Issue: 2, Summer-Autumn 2023, PP 19 -41A multi-level sustainable supply chain is related to a system that includes all activities necessary to transfer and supply materials and services from the producer to the consumer. In this system, the focus is on providing materials and services based on a number of objectives, such as reducing costs, increasing quality, and preserving the environment. Due to the increase of uncertainty in the supply chain, organizations need to use resources for the prediction of internal uncertainties, needs, and supply, thereby minimizing vulnerability and elevating the tolerance of their supply. Understanding the uncer-tainties and the parameters causing factors causes the problem of risk management to be raised in some cases. Therefore, main contribution of current study is multi-objective planning for a sustainable, multi-level, multi-period model, consid-ering the determined conditions and boom as uncertainty scenarios, has been specifically considered. The most important goal of the research is to determine the best units of each level (suppliers, factories, ...) of chain networks according to the points and criteria determined in the model and network, design and determine the best communication routes (network) between the selected units Each level is optimal with other levels as well as determining the volume of transported goods in these routes. For this purpose, a mathematical model has been developed, which is solved through the limited epsilon method and NSGA-II meta-heuristic algorithm. Data comparing the mathematical model and NSGA-II meta-heuristic algorithm show the calculated errors of 0.022, which considering that it is less than 0.1, the calculation error is acceptable and can be compared to the results of the error methods. The sensitivity analysis on the probability of the boom scenario showed the value of the objective function can change between 7398.51 and 3245.73. Finally, the sensitivity analysis of the probability of recession scenario showed the value of the objective function can change between 3291.64 and 9364.35. The findings of this research show that using the multi-objective planning model in the sustainable supply chain, taking into account the boom and bust of the market, can create significant improvements in the performance and profitability of the supply chain.Keywords: Sustainable Supply Chain, Uncertainty, Epsilon Constraint, NSGA-II
-
Portfolio optimization is the process of distributing a specific amount of wealth across various available assets, with the aim of achieving the highest possible returns while minimizing investment risks. There are a large number of studies on portfolio optimization in various cases, covering numerous applications; however, none have focused exclusively on the automotive industry as one of the largest manufacturing sectors in the global economy. Since the economic activity of this industry has a coherent pattern with that of the global economy, the automotive industry is very sensitive to the booms and busts of business cycles. Due to the volatile global economic environment and significant inter-industry implications, providing an appropriate approach to investing in this sector is essential. Thus, this paper aims to provide an appropriate approach to investing in this sector. In this study, an extended Conditional Drawdown at Risk (CDaR) model with cardinality and threshold constraints for portfolio optimization problems is proposed, which is highly beneficial in practical portfolio management. The feature of this risk management technique is that it admits the formulation of a portfolio optimization model as a linear programming problem. The CDaR risk functions family also enables a risk manager to control the worst ( 1-α)×100% drawdowns. In order to demonstrate the effectiveness of the proposed model, a real-world empirical case study from the annual financial statements of automotive companies and their suppliers in the Tehran Stock Exchange (TSE) database is utilized.
Keywords: Portfolio optimization, Conditional drawdown at risk, Downside risk measures, Cardinality constraint, Automotive industry -
International Journal of Supply and Operations Management, Volume:10 Issue: 3, Summer 2023, PP 319 -336Nowadays, in production environments where the production system is parallel machines, the reliability of the machines is important and the uncertainty of scheduling parameters is common. In this paper, unrelated parallel machine scheduling problem using a fuzzy approach with machines maintenance activities and process constraints is of concern. An important application of this problem is in the production of products that the due dates are defined as a time window and the best due date is close to the middle of the time window and the jobs processing times depend on other factors such as operator and their value is not specified and are announced as interval under uncertainty. In this study, first, a fuzzy mathematical model is proposed in which changing between a fuzzy approach and a deterministic model is described. Then, since the problem is NP-hard, a fuzzy-based genetic algorithm to solve large instances is developed. In this algorithm, a greedy decoding approach according to fuzzy parameters is developed. Numerical experiments are used to evaluate the performance of the developed algorithm. It is concluded that the proposed algorithm shows great performance in large instances and is superior to the proposed mathematical model in small instances too.Keywords: parallel-machine scheduling, fuzzy processing times, fuzzy due dates, availability constraint, Genetic Algorithm
-
باتوجه به اینکه مساله انتخاب مسیر مسافر و پارامترهای دخیل در آن در دهه ها مورد توجه و مطالعه برنامه ریزان و سیاست گذاران حمل ونقل بوده است؛ در این مقاله سعی شده است تا با بررسی و بهبود مدل ریاضی انتخاب مسیر مسافران در مطالعات پیشین، افزایش کارایی محاسباتی و کاهش زمان پردازش داده ها مد نظر قرارگیرد. این موضوع از طریق چندهسته ای نمودن شیوه پردازش داده ها (پردازش موازی) برپایه اصلاح مدل های ریاضی ارایه شده در مطالعات پیشین، در قالب مدل تخصیص پویای حمل ونقل همگانی با الگوریتم کوتاه ترین مسیر مبتنی بر برنامه زمانی و زیرالگوریتم حذف سفر، انجام شده است. نتایج با خروجی های یک مدل غیرپویا مبتنی بر الگوریتم کوتاه ترین مسیر کمان-مبنا مقایسه گردید تا تاثیر در نظر گرفتن محدودیت ظرفیت و پویایی الگوریتم در زمان محاسبات و میزان دقت خروجی مورد سنجش قرار گیرد. نتایج نشان داد که با وجود افزایش میزان محاسبات به میزان 7/13 درصد نسبت به مدل پایه، اما به دلیل استفاده از پردازش موازی زمان حل مساله 20 درصد کاهش پیدا کرده است.
کلید واژگان: شبکه حمل ونقل همگانی، تخصیص پویا، محدودیت ظرفیت، الگوریتم کوتاه ترین مسیر، پردازش موازیRoad journal, Volume:31 Issue: 2, 2023, PP 15 -32Considering that the issue of choosing the passenger's route and the parameters involved in it has been the focus and study of transportation planners and policymakers for decades, in this article it has been tried to increase the computational efficiency and reduce the data processing time by examining and improving the mathematical model of passenger route selection in previous studies. This issue has been addressed through multi-core data processing (parallel processing) based on the modification of mathematical models presented in previous studies in the form of a public transport dynamic assignment model with the shortest path algorithm based on the schedule and the travel elimination sub-algorithm. The results were compared with the outputs of a non-dynamic model based on the shortest link-based algorithm to measure the effect of considering the capacity constraint and dynamics of the algorithm on the calculation time and the accuracy of the output. Even though the number of calculations went up by 13.7% compared to the basic model, the time it took to solve the problem went down by 20% because of parallel processing.
Keywords: Public Transport Network, Dynamic Assignment, Capacity Constraint, Shortest Path Algorithm, ., Parallel Processing -
Journal of Modern Processes in Manufacturing and Production, Volume:12 Issue: 2, Spring 2023, PP 53 -79Circular manufacturing supply chains offer a novel and compelling perspective within the realm of supply chain sustainability. Consequently, the development of a suitable solution approach for circular manufacturing supply chains holds significant value. This study presents appropriate solution approaches for a mathematical model that has been formulated for a circular supply chain. To address the small-sized problem, the epsilon-constraint method is proposed. This method aids in obtaining a Pareto set of optimal solutions, facilitating the evaluation of trade-offs among three objectives. Given the NP-hard nature of the problem, the non-dominated sorting genetic algorithm (NSGA-II) is employed to approximate the Pareto front for larger problem sizes. A comparative analysis is conducted between the outcomes achieved in smaller dimensions using the epsilon-constraint method and those generated by the metaheuristic algorithm. The results indicate that the error percentage of the objective function, when compared to the epsilon method, remains consistently below 1%, underscoring the effectiveness of the proposed algorithm. These methodologies empower decision-makers to offer efficient, optimal solutions, enabling them to select the most suitable alternative based on budgetary considerations and organizational policies.Keywords: Circular Manufacturing Supply Chain, Optimization, epsilon-constraint, NSGA-II algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.