به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

integer programming

در نشریات گروه فنی و مهندسی
  • Meisam Saleki *, Reza Khaloo Kakaie, Mohammad Ataei, Ali Nouri Qarahasanlou
    One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that fall within the designated pit limit. This paper presents a mathematical model of the UPL with NPV maximization, enabling simultaneous determination of the UPL and long-term production planning. Model behavior is nonlinear. Thus, in order to achieve model linearization, the model has been partitioned into two linear sub-problems. The procedure facilitates the model solution and the strategy by decreasing the number of decision variables. Naturally, the model is NP-Hard. As a result, in order to address the issue, the Dynamic Pit Tracker (DPT) heuristic algorithm was devised, accepting economic block models as input. A comparison is made between the economic values and positional weights of blocks throughout the steps in order to identify the most appropriate block. The outcomes of the mathematical model, LG, and Latorre-Golosinski (LAGO) algorithms were assessed in relation to the DPT on a two-dimensional block model. Comparative analysis revealed that the UPLs generated by these algorithms are consistent in this instance. Utilizing the new algorithm to determine UPL for a 3D block model revealed that the final pit profit matched LG UPL by 97.95%.
    Keywords: Open Pit Mines, Ultimate Pit Limit, Net Present Value, Integer Programming, Heurist Algorithm
  • سید مهدی میرخرسندی، حسین خسروی*، علیرضا داوودی، سید مجتبی موحدی فر

    از نظر مالی، پورتفوی های پروژه می توانند کاملا خودکفا باشند، هنگامی که سرمایه ی لازم برای جریان نقدی آن ها تنها از طریق سرمایه گذاری مجدد سود پروژه های به اتمام رسیده و سرمایه اولیه صاحبان سهام حاصل شود. با این حال، علی رغم حداکثرسازی ثروت به دلیل کمبود منابع مالی شرکت تنها می تواند برخی از پروژه های سودآور خو را را انجام دهد. در چنین مواردی، به عنوان یک راه حل عملی برای برآورده کردن کاستی های مالی اجرای پروژه ها می تواند به صورت مرحله ای باشد. بنابراین، تصمیم گیرندگان درگیر یافتن بهترین انتخاب و زمان بندی پورتفوی های پروژه قابل سازمان دهی به صورت خودتامین مالی می شوند. این تحقیق یک مدل ریاضی را برای مشکل پورتفوی پروژه های ساختمانی با در نظر گرفتن همزمان استراتژی سرمایه گذاری مجدد درآمزایی حین کار و فازبندی را در سطح شرکت ارائه می دهد. در این مورد، یک مدل برنامه ریزی عدد صحیح برای به حداکثر رساندن ارزش فعلی خالص سرمایه گذاری ارائه شده است. مدل پیشنهادی یک سیستم پشتیبانی تصمیم گیری برای سرمایه گذاران را برای انتخاب و برنامه ریزی پورتفوی های پروژه ساختمانی قابل سازمان دهی به صورت خودتامین مالی فراهم می کند، در انتها کاربرد مدل در یک مثال موردی نشان داده شده است.

    کلید واژگان: مدیریت سبد پروژه های ساختمانی، برنامه ریزی عدد صحیح، صرفه جویی در مقیاس، استراتژی فازبندی، ساختار مالی خود تامین مالی
    Seyed Mahdi Mirkhorsandi, Hossein Khosravi *, Alireza Davoodi, Seyed Mojtaba Movahedifar

    Financially, project portfolios can be completely self-reliant when their required liquidity is merely obtained through reinvesting the profit of the finished projects and the initial capital of the owners. However, the firm can only perform some profitable projects despite maximizing wealth owing to a shortage of funds. In such cases, projects’ implementation can be phased as a practical solution to satisfy financial deficiencies. Therefore, decision-makers are involved in finding the optimum selection and scheduling of the self-financing phase-able project portfolios. Some projects especially construction projects encompass a multi-stage process of repetitive activities, which pave the way for taking advantage of the economy of scale when organizing for development. This research proposes a mathematical model for the problem of building construction project portfolio with simultaneous consideration of the reinvestment strategy, phasing strategy, and economy of scale at the enterprise level. In this case, an integer programming model to maximize the investment's net present value is presented. The proposed model provides a decition support system for property developers to select and schedule self-financing phase-able building construction project portfolios, in this context, the model's applicability is illustrated in a case example.

    Keywords: Building project portfolio management, Integer programming, Economy of scale, Phasing strategy, self-financing financial structure
  • Mehdi Iranpoor *, Ali Aghadavoudi Jolfaei, Mohammadreza Batavani
    The scheduling of sports events has a high degree of complexity due to the large number, diversity, and the interdependence of events as well as the existence of conflicting objectives. The present study investigates the integrated scheduling of multiple types of sports events simultaneously. A variety of sports events, including competitions, management meetings, training camps, and training workshops, are scheduled simultaneously regarding the appropriateness of the timeslot for each event and the suitability of the length of the time interval between each pair of events. Previous studies were limited to detailed scheduling of single types of events. For instance, they determine when and where each team plays with other teams. However, the current paper takes a macroscopic view and sets the timeslots in which the competitions and other types of events will be held. The part of output which sets the competition timeslots can be further given as input to one of the existing algorithms which determine the detailed schedule of competitions. An integer programming formulation is developed. Numerical examples demonstrate that the general-purpose solvers cannot obtain the optimal solution of real-sized problems within an acceptable time. To solve larger problems, the fix-and-optimize matheuristic approach is employed. Numerical results show the satisfactory performance of this approach. To validate the proposed method, the sport events of the Karate Federation of Iran for a whole year are scheduled as a real case study. Finally, using the data of this case study, a sensitivity analysis is performed for some of the parameters.
    Keywords: Sports scheduling, Multiple sport events, Integer programming, Fix-and-optimize matheuristic, Case Study, Sensitivity Analysis
  • Mostafa Khorramizadeh

    Here, we first associate a graph to a university course timetabling problem (UCTP) and use the components of this graph and some customary and organizational rules to transform the original large scale problem into some smaller problems. Then, we apply the branch and cut method to obtain the optimal solution of each smaller problem. Our presented approach enables us to apply exact methods to obtain high quality solutions for large scale UCTPs. Finally, we examine the numerical efficiency of the resulting algorithm.

    Keywords: Integer Programming, University Course Timetabling, Branch, Cut Method, Binary Variables, Scheduling Problem
  • مریم شعاعی، پروانه سموئی*

    هدف:

     درصد قابل توجهی از دارایی ها در موجودی های انبار انباشته شده است، از این رو انبار در اقتصاد کشورها اهمیت فراوانی دارد. طراحی و چیدمان مناسب یک انبار، نقش بسیار زیادی در کاهش هزینه ها، کاهش زمان تدارک و تحویل، ارتقای بهره برداری از منابع و ارتقای سرویس دهی به مشتریان دارد. یک نوع از انبارهایی که اخیرا کاربرد زیادی پیدا کرده اند، انبارهای عبوری هستند که از نظر میزان کالاهایی که انبار می شوند و همچنین مدت زمان نگهداری آن ها، با انبارهای سنتی تفاوت دارند. هدف اصلی در این تحقیق مدل سازی و حل مسیله ای سازگار با شرایط دنیای واقعی است که کمتر موردتوجه پژوهشگران قرار گرفته است.

    روش شناسی پژوهش: 

    برای حل مسیله مورد نظر، الگوریتم بهینه سازی گرگ خاکستری چند هدفه (MOGWO) بکار می رود و تنظیم پارامترها به کمک روش تاگوچی انجام می گردد.

    یافته ها

    به کمک شاخص های متوسط فاصله از ایده آل، فاصله، تعداد نقاط پارتو و پراکندگی، توسط نمودار نسبت سیگنال به نویز، بهترین سطح ممکن برای پارامتر های الگوریتم تعیین شده است. با حل 10 مثال در ابعاد مختلف و بررسی نتایج و زمان حل آن ها مشخص شده است که با افزایش ابعاد مسیله، زمان حل نیز افزایش می یابد.

    اصالت/ارزش افزوده علمی:

     در این مطالعه، علاوه بر توجه به میزان مسافت طی شده در انبار که بیشتر مطالعات صورت گرفته در حوزه طراحی انبار بدان پرداخته اند، بهره گیری بیشتر از فضای قابل دسترسی در انبار و رضایت خرده فروشان نیز مد نظر قرار گرفته است. به همین منظور، یک مدل برنامه ریزی عدد صحیح مختلط، برای طراحی و چیدمان یک انبار عبوری در جهت حداقل نمودن مسافت ها، حداقل نمودن فضای خالی کف انبار و به حداکثر رساندن رضایت خرده فروشان پیشنهاد می شود.

    کلید واژگان: الگوریتم بهینه سازی گرگ خاکستری چند هدفه، انبار عبوری، برنامه ریزی عدد صحیح، تاگوچی، طراحی و چیدمان
    Maryam Shoaee, Parvaneh Samouei *
    Purpose

    Warehousing is very important in the economies of countries, because a significant percentage of assets are stored in the warehouse. Proper warehouse design and layout has a great role in reducing costs, reducing lead time and delivery time, improving resource utilization and customer service. One type of warehouse that has become widely used recently is cross dock warehouses, which differ from traditional warehouses in terms of the number of products stored and their storage time. The main purpose of this research is modeling and solving a problem that is compatible with real world conditions that have received less attention from researchers.

    Methodology

    Multi-Objective Gray Wolf Optimization (MOGWO) algorithm is used to solve the problem and Parameters are adjusted using the Taguchi method.

    Findings

    Using the mean ideal distance, spacing, number of pareto solutions and diversification metric, the best possible level for the algorithm parameters is determined by the signal-to-noise ratio diagram. By solving 10 examples in different sizes and reviewing the results and their solution time, it has been determined that with increasing the size of the problem, the solution time also increases.

    Originality/Value: 

    In this study, in addition to considering the distance traveled in the warehouse, which most studies have done in the field of warehouse design, more use of available space in the warehouse and the satisfaction of retailers has also been considered. For this purpose, a mixed integer programing model is proposed to design a cross dock warehouse to minimize distances, minimize the vacant space of the warehouse, and maximize retailer’s satisfaction.

    Keywords: Multi-objective gray wolf optimization algorithm, Cross dock warehouse, Integer programming, Taguchi, Design, Layout
  • F. Trigos, L. E. Cardenas-Barron *
    Many applications of optimisation require the final value of the decision variables tobe integer. In many cases the relaxed optimal solution does not satisfy the integral-ity constraint therefore, the problem must be solved by integer or mix-integer pro-gramming algorithms at a significant computational effort and most likely a worsenobjective function value. The contribution of this paper is twofold: The identificationof a type of problems in which the relaxed optimal objective function value can bekept in the implementation by a change in the planning horizon; and the identifica-tion of a multi-period based solution procedure. Three small instances are providedin order to illustrate the methodology as well as the economic impact involved. Inaddition, a fourth industrial size case is included for the benefit of practitioners.This work shows that business profit can be increased for pseudo-continuous-integerperiodical linear problems by identifying optimal decision-making periods.
    Keywords: Business profit, Integer programming, Linear programming, operations management, operations planning
  • Hagazi Heniey *, Kidane Gebrehiwot, Tsegay Desta, Leake Gebrehiwot
    Ethiopia's industrial development strategy is characterized by manufacturing-led and expansion labor-intensive industrialization. The country expects to generate more income from the exported market. However, the case company is still known not to become productive as much as possible due to different reasons. One of the big challenges of the company has the problem with holding inappropriate inventory and with determines their optimal cost due to poor production planning. So that to solve this problem objective of the paper is to minimize total cost through the integration of seasonal forecasting and integer programming model without violating demand fulfillments. This technique improves resource utilization and enhances inventory control or stock control system. Currently, the company produces different kinds of products grouped into four common types of products (knitted garment, knitted fabric, woven garment, and woven fabric). The data survey system was both primary and secondary system and classified the products using A B C (always better classification) classification. The optimal solution was settled through the integration of seasonal forecasting and integer programming. As the Sensitivity analysis indicated the a big gap between production capacity and actual demand of the products. As the optimized solution indicated that total cost of production cost and inventory cost was minimized and the optimal production plan as well safety stock levels in each quarter was settled. Seasonal demand forecasting is a key activity for a garment which more or less controls all activities of production processes since garment products are affected by seasonal. As the result and discussion have shown that after optimized increase profit of the company through minimizing production cost and inventory costs since both costs are the big constraint of the company. Based on the optimized solution finding annually total cost needs for each A, B, and C – categories products are 57,225,920 BIRR 4,733,013 BIRR, 8,229,309 BIRR, respectively for production and inventory costs. The optimized solution indicated that if the company implemented exactly the proposed solution it will get an additional,4,219,788.8 BIRR,772,055.8 BIRR,2,119,824.2 BIRR respectively for A, B, C categories products totally around 7,111,668.8 BIRR profit per year will get. To end, it was concluded that this remarkable profit increment of the case company can certainly enhance its productivity and worldwide competitiveness. This research will create further pathways for other researchers to accomplish substantial studies on other garment sectors or other manufacturing industries based on local and international perspectives.
    Keywords: ABC classification, seasonal forecasting, Optimization, Integer programming
  • علیرضا پویا*، مرتضی پاکدامن، سمیه فدائی، مرتضی چایچی مطلق، سروش صدرایی
    سامانه حمل و نقل اتوبوس یکی از مهمترین سامانه های حمل و نقل همگانی به شمار می رود. بهبود این سامانه تاثیر بهسزایی در عملکرد و افزایش کارایی سامانه حمل و نقل شهرها و به تبع آن رضایت بیشتر و جذب مسافران خواهد داشت. یکی از مسایل مهم در این حوزه تخصیص بهینه تعداد وسایل نقیله به خطوط است که تحت عنوان مساله جدول زمانی حمل و نقل شناخته می شود. به طور مشخص تخصیص تعداد بیش از نیاز هر کدام از این وسایل به هر خط باعث ایجاد ظرفیت مازاد برای آن خط و برعکس تخصیص کمتر از نیاز باعث نارضایتی مسافر به عنوان خدمت گیرنده می شود. از اینرو هدف اصلی تحقیق، برآورد دقیق و بهینه تعداد وسیله و تعداد حرکت وسایل به تفکیک هر خط، هر بازه و هر نوع روز می باشد. در این پژوهش از مدل های ریاضی بهینه یابی برای حل مساله مذکور استفاده می شود. مدل پیشنهادی، یک مدل برنامه ریزی عدد صحیح است. برای ساخت مدل از پیشینه تحقیق و مصاحبه با دست اندرکاران، کارشناسان و مدیران سازمان اتوبوسرانی و خبرگان حمل و نقل عمومی استفاده شد. برای ارزیابی مدل طراحی شده علاوه بر حل چند مثال کوچک اقدام به پیاده سازی آزمایشی روی مجموعه خطوط پایانه آزادی شبکه اتوبوسرانی مشهد شد. نتایج حاصل از حل مدل با مقادیر واقعی مقایسه شد. نتایج پاسخ های بدست آمده از مدل نشان داد با تعداد وسیله کمتر نسبت به تعداد واقعی اتوبوس ها در روزهای مورد بررسی، کلیه محدودیت های سیستم به ویژه تقاضا تامین می شود.
    کلید واژگان: برنامه ریزی ظرفیت، برنامه ریزی عدد صحیح، خطوط اتوبوسرانی شهری، سیستم پشتیبان تصمیم
    Alireza Pooya *, Morteza Pakdaman, Somayeh Fadaei, Morteza Chaichi Motlagh, Soroush Sadraei
    The bus transport system is one of the most important public transportation systems. Improvement of this system has a significant effect on performance and increase the efficiency of cities’ transportation systems and consequently it will have more satisfaction and attraction for passengers. One of the key issues in this field is the optimal allocation in number of vehicles, which is known as the transport timetable. Specifically, allocating each of these devices to each line more than needed will cause excess capacity for that line and conversely, allocation less than needed leads to passenger discontent as a service receiver. Therefore, the main purpose of the research is to estimate the precise and optimal number of vehicles and the number of bus commuting in each line, each time and any kind of day. In this research, mathematical optimization models are used to solve this problem. The proposed model is an integer programming model. Background of the research, interview with the practitioners, bus operating company directors and public transport experts were used for making the model. In order to evaluate the designed model, in addition to solving a few small examples, a pilot experiment was carried out on set of lines of the Azadi terminal of Mashhad Bus Network. The model results were compared with the actual values. The results of the responses obtained from the model showed that with the number of vehicles less than the actual number of buses in the days under investigation, all the constraints of the system, especially demand, are provided.
    Keywords: capacity planning, Integer programming, Urban bus lines, Decision support system
  • Samin Tadarok, M.B. Fakhrzad *, Mohammad Jokardarabi, Abbasali Jafari-Nodoushan
    The main challenge in blood supply chain is the shortage and wastage of blood products. Due to the perishable characteristics of this product, saving a large number of blood units on inventory causes the spoil of these limited and infrequent resources. On the other hand, a lack of blood may lead to the cancellation of health-related critical activities, and the result is a potential increase in mortality in hospitals. In this paper, an integer programming model was proposed to minimize the total cost, shortage, and wastage of blood products in Namazi hospital by considering the different types of blood groups. The parameters in the real-world are uncertain, and this problem will be examined in the paper. The robust fuzzy possibilistic programming approach is presented, and a numerical illustration of the Namazi hospital is used to show the application of the proposed optimization model. Sensitivity analysis is conducted to validate the model for problems such as certainty level, coefficient weight, and penalty value of the objective function in the robust fuzzy possibilistic programming. The numerical results imply the model is able to control uncertainty and the robustness price is imposed on the system; therefore, the value of the objective function in the robust fuzzy possibilistic is 80% lower than probabilistic.
    Keywords: blood supply chain, Integer programming, chance constraint, Uncertainty, Robust fuzzy possibilistic
  • طاها کشاورز*

    بیماری سرطان به عنوان یکی از مهم ترین علل مرگ در جهان، روند رو به رشدی در سال های اخیر داشته است و پیش بینی می شود که این روند در سال های آتی همچنان ادامه یابد. بنابراین اهمیت تدوین برنامه کنترل سرطان و لزوم ارایه روش های موثر اهمیت بسزایی دارد. با توجه به اینکه پرتو درمانی روشی موثر برای درمان سرطان است، مطالعات بر روی این روش درمان مهم و قابل توجه است. هدف اصلی این مقاله، ارایه مدل ریاضی برای جدیدترین روش پرتو درمانی با نام پرتو درمانی با حجم تطبیق شده است. در اکثر مطالعات انجام شده در این زمینه به دلیل پیچیدگی مدل، هدف مساله را بیشینه سازی دوز دریافتی در ناحیه هدف و یا کمینه سازی دوز دریافتی در ناحیه ارگان های در معرض خطر قرار داده اند. در این مطالعه سعی شده هر دو هدف با هم در نظر گرفته شده و یک مدل دو هدفه ارایه شود. نتایج 8 نمونه مورد بررسی نشان می دهد میزان دوز دریافتی در ناحیه هدف به میزان قابل توجهی بیشتر از دوز دریافتی در ناحیه اطراف تومور است. علاوه بر افزایش دوز دریافتی در ناحیه هدف و کاهش دوز دریافتی در سلول های اطراف هدف، نحوه توزیع دوز در وکسل ها بسیار مهم است، از این رو دوز به دست آمده با شاخص ضریب تغییر مورد بررسی قرار گرفت. نتایج نشان می دهد مدل ارایه شده با ضریب تغییر کمتر از 10% توزیع دوز منسجمی در تمام بافت ها (بافت سرطانی و بافت سالم) دارد.

    کلید واژگان: پرتو درمانی، سلول های سرطانی، روش حجم تطبیق شده، بهینه سازی دو هدفه، برنامه ریزی عدد صحیح
    Taha Keshavarz *

    Cancer, one of the leading causes of death in the world, has been on the rise in recent years and is expected to continue in the coming years. Therefore, the importance of developing a cancer control program and the need to provide effective methods is very important. Given that radiation therapy is an effective way to treat cancer, studies on this method of treatment are important and significant. The main purpose of this paper is to provide a mathematical model for the latest method of radiotherapy called volumetric modulated arc therapy. In most studies in this field, due to the complexity of the model, the purpose of the problem is to maximize the dose received in the target area or to minimize the dose received in the area organs at risk. In this study, both objectives are considered together and a bi-objective model is presented. The results of the 8 studied instances show that the dose received in the target area is significantly higher than the dose received in the area around the tumor. In addition to increasing the dose received in the target area and decreasing the dose received in the cells around the target, the distribution of the dose in the voxels is very important, so the dose was examined with the coefficient of variation. The results show that the proposed model with a coefficient of variation of less than 10% has a conformal dose distribution in all tissues (cancerous tissue and healthy tissue).

    Keywords: Radiotherapy, Cancer cells, VMAT, Bi-objective optimization, Integer programming
  • فرزاد ستوده، محمد عطایی*، رضا خالوکاکایی

    برنامه ریزی تولید، مهم ترین و تاثیرگذارترین موضوع در طراحی و ارزیابی اقتصادی معادن روباز و زیرزمینی است. هدف از برنامه ریزی تولید معادن، زمان بندی و تعیین توالی فعالیت های معدنکاری با در نظر گرفتن محدودیت های فنی و استخراجی به منظور دستیابی به یکی از اهداف بیشینه سازی سود یا ارزش خالص فعلی (NPV)، میزان استخراج کانسنگ از ذخیره و عمر معدن است. بهینه سازی برنامه ریزی تولید معادن زیرزمینی که برای تعیین توالی کارگاه های استخراج به کار می رود، به دلیل پیچیده بودن تصمیم گیری ها و تعامل بین محدودیت های موجود، کاری دشوار است. از آنجا که تکنیک های برنامه ریزی ریاضی قادر به حل مسایل پیچیده و چند محدودیتی هستند، می تواند برای اهداف بهینه سازی به کار گرفته شوند. در این پژوهش، پس از پرداختن به مطالعات پیشین در رابطه با طراحی محدوده و برنامه ریزی تولید معادن زیرزمینی، به توضیح گام به گام مدل ارایه شده مبتنی بر برنامه ریزی عدد صحیح برای بهینه سازی برنامه ریزی تولید، پرداخته شده است. برای اعتبار سنجی مدل ساخته شده، مثالی در نظر گرفته شده است. بدین صورت که، ابتدا، توالی استخراج کارگاه ها با استفاده از رویکرد دستی/ معمولی و سپس، با استفاده از مدل ریاضی بسط داده شده در نرم افزار GAMS/CPLEX، انجام شده است. ارزش خالص فعلی (NPV) به دست آمده از برنامه ریزی تولید دستی برابر 211/8 میلیون دلار و با استفاده از مدل ریاضی برابر 331/8 است. به بیان دیگر ارزش خالص فعلی در رویکرد مبتنی بر برنامه ریزی ریاضی 46/1 درصد بیشتر از رویکرد دستی و معمولی بوده است که حاکی از قدرت برنامه ریزی ریاضی در حل مسایل چند محدودیتی است.

    کلید واژگان: برنامه ریزی تولید، بهینه سازی، معدنکاری زیرزمینی، برنامه ریزی عدد صحیح، ارزش خالص فعلی (NPV)
    Farzad Sotoudeh, Mohammad Ataei *, Reza Khaloo Kakaie

    Production scheduling is the most important and influential issue in open pit and underground mining design and planning. The main purpose of mine production planning is time scheduling and determination of mine activities sequencing under some technical and extraction constraints in order to achieve one of the following goals: maximizing Net Present Value (NPV), the amount of ore extraction or mine life. Underground mine planning optimization which is used to determine the sequence of stopes extraction, is difficult due to the complexity of decision making and the interaction between existing constraints. Since, mathematical programming techniques are capable for solving complex and multi-limiting problems, they can be used for optimization purposes. In this study, after reviewing previous studies on the design and planning of underground mine production, the step by step explanation of a proposed model based on Integer Programming (IP) has been addressed. In order to validate proposed model, an example of 9 stopes was considered. First, the sequence of extraction was carried out using manual design and then using extended mathematical model in GAMS/CPLEX software. The current NPV obtained by manual production scheduling was 8.211 million dollars. While, this value for mathematical model was 8.331 million dollars. In other words, NPV value in mathematical model was 1.46% higher than manual method which indicate the power of mathematical programming for solving complex problems.

    Keywords: Production scheduling, Optimization, Underground Mining, integer programming, Net Present Value
  • Cucuk Nur Rosyidi *, Endah Budiningsih, Wakhid Ahmad Jauhari

    Undergraduate thesis examination in Industrial Engineering Department of Universitas Sebelas Maret conducted through two stages, namely intermediate and final examination. Currently, the scheduling process of such examinations is done by the undergraduate thesis coordinator manually without certain systematic method or approach. In this paper, we develop an optimization model for the examinations scheduling considering several factors, namely the number of lecturers that must attend the examinations, the availability of rooms for examinations, the availability of each lecturer, and the assignment distributions. The model uses integer programming approach. Two performance criteria are used in the model, namely the difference between the number of each lecturer’s assignment with the average number of lecturer assignments and the number of penalties from the assignment of lecturers on certain time slot. The developed model is able to solve the scheduling problem more efficiently than manual scheduling done by thesis coordinator. The optimal solutions from the optimization model show a total difference in the assignment of lecturer with an average of 29.6 and a penalty of 0.

    Keywords: Scheduling, Timetabling, Integer programming, Invigilator assignment
  • Ayfer Basar, Özgür Kabak *, Y. Ilker Topcu
    Banks need to open new branches in new sites as a result of increase in the population, individual earnings and the growth in national economy. In this respect, opening new branches or reorganizing the locations of current branches is an important decision problem for banks to accomplish their strategic objectives. This paper presents a decision support method for multi-period bank branch location problems. Our aim is to find bank branch location based on transaction volume, distance between branches, and cost of opening and closing branches. The proposed method not only develops an Integer Program and a Tabu Search algorithm to find the exact places of branches but also presents a structuring method to identify the related criteria and their importance. We demonstrate the effectiveness of the method on random data. In the final stage, the method is applied in a Turkish bank’s branch location problem considering the current and possible places of the branches, availability of the data, and the bank’s strategies for a four-year strategic planning.
    Keywords: Integer programming, decision support system, Tabu search, case study, banking, location
  • ثریا فروغی، جعفر خادمی *، مسعود منجزی، مایکا نرینگ

    تعیین محدوده بهینه کارگاه و زمان بندی تولید بهینه، دو بخش مهم در طراحی معادن زیرزمینی می باشند که ارتباط تنگاتنگی با یکدیگر دارند و نتایج بهینه سازی هر بخش بر بخش دیگر تاثیر بسزایی دارد، لذا بهینه سازی این دو بخش به صورت مجزا نمی تواند بهینگی را تضمین کند؛ چراکه در روش مجزا، اثرات و تعاملات بین بخش های مختلف طراحی نادیده گرفته می شود و این روش قادر به مدیریت مسائل و مشکلات بین بخش هایی نیست. در سالهای اخیرگرایش به روش بهینه سازی همزمان و یکپارچه بخش های مختلف معدنکاری زیرزمینی توجه ویژه ای را به خود اختصاص داده است که در آن بخش های مختلف در فرایند طراحی معدنی به صورت همزمان بهینه سازی می شود و منجر به تولید طرح های معدنی سودآورتر می شود. در مطالعه حاضر، یک مدل ریاضی عدد صحیح برای بهینه سازی همزمان محدوده کارگاه و زمان بندی تولید در روش استخراج از طبقات فرعی توسعه داده شد؛ سپس مدل ارائه شده بر روی یک کانسار آهن اجرا و نتایج حاصل از بهینه سازی همزمان با روش مجزا مقایسه شد. نتایج نشانگر آن بود که روش بهینه سازی همزمان قادر است نتایج بهینه صحیح را برای تعیین محدوده کارگاه و زمان بندی تولید با برآورده سازی تمام محدودیت-های مرتبط با این دو بخش از طراحی معدنکاری زیرزمینی تولید کند. کاربرد این روش روی یک کانسار آهن، منجر به افزایش16درصدی در ارزش خالص فعلی (NPV) نهایی در مقایسه با روش بهینه سازی مجزا شد.

    کلید واژگان: بهینه سازی همزمان، بهینه سازی مجزا، محدوده کارگاه بهینه، زمان بندی تولید، برنامه ریزی عدد صحیح
    Sorayya Foroughi, Masoud Monjezi, Micah Nehring, Jafar Khademi *

    Stope layout and production scheduling are two main areas of underground mine planning that have a close relationship with each other such a way that optimization results of each of them have important effects on the other one. Hence, separately optimization of these two areas cannot guarantee the true optimum. Because, in isolated optimization approach often ignores the effects of different planning areas on each other, this is not able to manage issues among different areas. To tackle this problem, simultaneous optimization approaches are developed in recent years which simultaneously optimize the different areas of the mine planning process and lead to more profitable mine plans. In the present research, a mathematical IP model has been developed to simultaneously optimize stope layout and production schedules for sublevel stoping (SLS). Then, the developed model is applied on iron ore operations and obtained results from simultaneous optimization were compared with those of isolated approach. It has been concluded that the simultaneous optimization approach is able to produce the globally optimal scheduling result for the stope layout optimization and scheduling by taking into account all constraints related to both areas. Application of the simultanous optimization method in iron ore operation resulted in a 16 per cent increase in final NPV over the isolated approach.

    Keywords: Simultanous optimization, isolated optimization, stope layout, production scheduling, integer programming
  • A. K. Garside *
    Food product has a characteristic of continuous quality deterioration until the food is consumed. Cold chain distribution can improve the sustainability of the product quality but requires a more significant investment for storage facilities and vehicles as well as higher operation cost to control the temperature. This research focuses on a distribution problem faced by an ice cream distributor. In this paper, we developed a mixed-integer non-linear programming model to minimize the total cost, which consists of fixed cost, transportation cost of the vehicles, energy cost to keep the cold storage temperature, and inventory cost. The model considers the vehicle characteristics and hard time-windows for the distributor and all the stores. The implementation of this model demonstrates that the proposed route is able to reduce the total cost.
    Keywords: Frozen food, cold chain, perishable, Distribution, Integer programming, Time-Windows
  • Soroush Avakh Darestani, Faranak Pourasadollah
    During the last decade, reverse logistics networks received a considerable attention due to economic importance and environmental regulations and customer awareness. Integration of leading and reverse logistics networks during logistical network design is one of the most important factors in supply chain. In this research, an Integer Linear Programming model is presented to design a multi-layer reverse-leading, multi-product, and multi-period integrated logistics network by considering multi-capacity level for facilities under uncertainty condition. This model included three
    objectives
    maximizing profit, minimizing delay of goods delivering to customer, and minimizing returned raw material from suppliers. This research gives financial incentives to encourage customers in order to return their used product. Considering that the remaining value of used products is the main incentive of a company to buy second-handed goods, a dynamic pricing approach is determined to define purchase price for these types of products, and based on that, the percentage of returned products were collected by customers. In addition, in this study, parameters have uncertainty features and are vague; therefore, at first, they are converted into exact parameters and, then, because model is multi-objective, the fuzzy mathematical programming approach is used to convert multi-objective model into a single objective; finally, the model by version 8 of Lingo is run. In order to solve a large-sized model, a non-dominated sorting genetic algorithm II (NSGA-II) was applied. Computational results indicate the effect of the proposed purchase price on encourage customers to return the used products.
    Keywords: Integrated supply chain network, Fuzzy mathematical programming, Dynamic pricing approach, Integer programming, Quality levels
  • مهندس محبوبه پیمانکار، محمد رنجبر، احمد ایزدی پور، سعید بلوچیان
    با توجه به نقش و اهمیت نحوه تخصیص و زمان بندی تسلیحات موجود به تهدیدهای مهاجم در یک نبرد، استفاده از مدل های ریاضی و بهینه سازی در این گونه مسائل ضروری است. در این مقاله یک مدل برنامه ریزی عدد صحیح خطی برای مسئله "تخصیص و زمان بندی سلاح های آن ها به اهداف" با هدف بیشینه کردن متوسط میزان تخریب اهداف و میزان محافظت از مناطق حساس و استفاده کارا از سلاح های موجود و با در نظر گرفتن محدودیت های عملیاتی نحوه تخصیص و زمان بندی سلاح ها ارائه می شود. از آنجایی که حل دقیق مدل ارائه شده با استفاده از نرم افزارهای موجود تحقیق در عملیات در ابعاد نه چندان بزرگ امکان پذیر نیست، الگوریتم ژنتیک و روش تجمع ذرات آشوبی برای این مسئله طراحی شده است. نتایج به دست آمده از این روش ها با جواب دقیق حاصل از مدل سازی مقایسه شده و مشخص می شود، روش تجمع ذرات آشوبی پیشنهادی در صورت وجود محدودیت زمان حل کارایی مناسبی دارد.
    کلید واژگان: زمانبندی، برنامه ریزی عدد صحیح، الگوریتم ژنتیک، الگوریتم تجمع ذرات آشوبی
    Mahbubeh Peymankar Mrs., Mohammad Ranjbar Dr., Ahmad Izadipour Dr., Saeed Baloucian Dr.
    In the combat management systems, mathematical and optimization models have significant impact to find good solutions for fire allocation and scheduling problems. In this paper, a linear integer programming model has been developed for a fire allocation and scheduling problems the aim of which was to maximize the expected value of the target distruction and strategic realms protection and efficient use of weapons by considering the operational constraints for weapon allocation. Since the available operation research solvers can not find the optimal solution of this problem in the large scale sizes, two metaheuristics based on genetic algorithm and chaotic particle swarm optimization was developed. Finally, based on randomnly generated test instances and extensive computation results, the performance of the developed algorithms was evaluated. The computational experiments reveal that the developed chaotic particle swarm optimization algorithm is more efficient especially in the limited and short CPU run time
    Keywords: Allocation, Scheduling, Integer Programming, Genetic Algorithm, Chaotic Particle Swarm Optimization
  • Reza Ghanbari*, Effat Sadat Alavi

    A new integer program is presented to model an independent resources assignment problem with resource shortages in the context of municipal fire service. When shortage in resources exists, a critical task for fire department's administrator in a city is to assign the available resources to the fire stations such that the effect of the shortage to cover (in providing service, in extinguishing fire and so on) is minimized. To solve the problem, we propose a polynomial time greedy algorithm.

    Keywords: Resource assignment problem, Integer programming, Fire stations, Shortage, Greedy algorithm
  • S. Tunali *, G. Oztuzcu

    Effective design and management of Supply Chain Networks (SCN) support the production and delivery of products at low cost, high quality, high variety, and short lead times. In this study, a SCN is designed for an automotive company by integrating various approaches. The study has been carried out in two phases: The first phase involves selecting suppliers and distributors by using Data Envelopment Analysis (DEA) and integer-programming model. In the second phase, first the priority ranking of selected suppliers and distributors is determined using the Analytical Hierarchy Process (AHP) and then these priority rankings are integrated into the transportation models developed to identify the optimal routing decisions for all members of the supply chain.

    Keywords: Supply chain management, Data Envelopment Analysis, Integer programming, Analytical Hierarchy Process, Transportation problem
  • Armin Jabarzadeh *, Mohammad Rostami, Mahdi Shahin, Kamran Shahanaghi
    This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associated with the machine purchase. Based on the made decisions, the second stage aims to schedule orders, while the objective is to minimize total tardiness costs. A dependent-chance programming (DCP) approach is used for the defuzzification of the proposed model. As the resulted formulation is a NP-hard problem, a branch and bound (B&B) algorithm with effective lower bound is developed. Moreover, a genetic algorithm (GA) is proposed to solve problems of large-sizes. The computational results reveal the high efficiency of the proposed methods, in particular the GA, to solve problems of large sizes.
    Keywords: Scheduling, Design of production systems, Fuzzy methods, Integer programming, learning, Meta-heuristics
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال