به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

meta-heuristic algorithm

در نشریات گروه فنی و مهندسی
  • ندا نگارچی*، صادق شهبازی، سید یعقوب ذوالفقاری فر
    هدف از تحقیق ارائه رویکردی برای حل مسئله زمانبندی پروژه عمرانی با در نظرگرفتن تخصیص منابع به فعالیت ها با توجه به روابط پیش نیازی و محدودیت منابع با مهارت های چندگانه بود. مدلی برای زمانبندی در پروژه تحقیقاتی عمرانی چند هدفه با محدودیت منابع با هدف حداقل سازی زمان و هزینه با کمینه سازی هزینه بیکاری منابع و جریمه عدم تخصیص سطح تخصصی واقعی منابع ضمن تکمیل پروژه است برای تکمیل پروژه ارائه شد. که حاصل آن یک مدل برنامه ریزی ریاضی بود. برای حل این مدل در ابعاد واقعی نیز یک الگوریتم فراابتکاری استفاده شد. از نرم افزارهای اکسل، متلب و گمز استفاده شد که برای حل مسئله در ابعاد کوچک از نرم افزار گمز و برای حل مسئله در ابعاد بزرگ از نرم افزار متلب استفاده شد. برای اثبات پیچیده بودن مسئله، مثال های مختلف و تصادفی در ابعاد مختلف ارائه شده که با بزرگ شدن ابعاد مسئله، زمان حل مسئله با نرم افزار گمز به صورت نمایی افزایش یافته و از مرحله خاصی، مسئله با نرم افزار گمز غیر قابل حل شد کارایی الگوریتم در ابعاد کوچک و در ابعاد بزرگ با چندین مثال عددی در به صورت تصادفی تولید و به وسیله الگوریتم NSGA II حل وبا جواب حاصل از نرم افزار گمز مقایسه شد.و مثال عددی در ابعاد مختلف توسط الگوریتم های NSGAII و MOSA و گمز مقایسه گردید .
    کلید واژگان: زمانبندی پروژه، محدودیت منابع با مهارت های چندگانه، مدل بندی ریاضی، الگوریتم فراابتکاری
    Neda Negarchi *, Sadegh Shahbazi, Sayyed Yaghoub Zolfegharifar
    The purpose of the research was to provide an approach to solve the scheduling problem of the construction project by considering the allocation of resources to the activities according to the prerequisite relationships and resource limitations with multiple skills. A model for scheduling in a multi-objective construction research project with limited resources was presented with the aim of minimizing time while completing the project. The result was a mathematical programming model. A meta-heuristic algorithm was used to solve this model in real dimensions. Excel, MATLAB and GEMS software were used, and GEMS software was used to solve problems in small dimensions and MATLAB software was used to solve problems in large dimensions. To prove the complexity of the problem, different and random examples are presented in different dimensions of the problem. As the dimensions of the problem increase, the time to solve the problem with GEMS software increases exponentially, and from a certain stage, the problem becomes unsolvable with GEMS software. Considering that the model presented in this research was more complex than the basic article, which caused the complexity of the research model. After checking the efficiency of the algorithm in small dimensions and in large dimensions by checking the correctness, correctness and efficiency of the algorithm, several numerical examples in small and large dimensions are randomly generated and by NSGA II algorithm, the solutions and solutions obtained from the Gems software are presented and compared.
    Keywords: Project Scheduling, Resource Constraints With Multiple Skills, Mathematical Modeling, Meta-Heuristic Algorithm
  • Abbas Toloie Eshlaghy, Amir Daneshvar *, Ali Peivandizadeh, Abdulrahman S Senathirajah, Irwan Ibrahim

    In this article, a health service delivery model based on the Internet of Things (IoT) under uncertainty is presented. The considered model includes a set of patients, doctors, vehicles, and services that should be provided in the shortest time and cost. The most important decisions of the network include the allocation of specialist doctors to patients, the routing of vehicles, and doctors to provide health services. The dataset of the problem has been provided to the hospital and centers using IoT tools and an integration framework has been designed for this problem. The results of solving the numerical examples show that to reduce the service delivery time and the distance traveled by vehicles, the design costs of the model should be increased. Also, the increase in the rate of uncertainty during service delivery leads to an increase in total costs in the health system. In this article, Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-objective imperialist Competitive algorithm (MOICA) were proposed to solve the model, and the results showed that the proposed methods are more efficient than the exact methods. These algorithms have achieved close to optimal results in the shortest possible time. Also, the calculation results in large numerical examples show the high efficiency of the MOICA.

    Keywords: Healthcare System, Uncertainty, Iot, Meta-Heuristic Algorithm, Vehicle Routing
  • Mohammadreza Pourhassan, Mohammadreza Khadem Roshandeh, Peiman Ghasemi *, Mehrnaz Sadat Seyed Bathaee

    In this study, we aim to explore the modeling and solution approach for a multi-objective location-routing-inventory problem. The focus is on planned transportation with the goal of minimizing total costs and reducing the maximum working hours of drivers. To achieve these objectives, we need to consider the routing of vehicles between customers and distribution centers, as well as the optimal allocation of product transfer flow between the production center and customers. Therefore, the proposed model incorporates location, routing-inventory, and allocation simultaneously. To solve the two-objective model, we employed the Epsilon-constraint method for small-sized problems. For large-sized problems, we utilized the NSGA-II and MOWOA meta-heuristic algorithms with a new chromosome. The computational results indicate that in order to reduce the maximum working hours of drivers, it is necessary to increase the number of vehicles and minimize travel distances. However, this leads to higher costs due to vehicle utilization and the need for constructing distribution centers closer to customers, which in turn increases construction costs. Finally, based on the analysis, the NSGA-II algorithm outperformed the MOWOA algorithm with a weighted value of 0.983 compared to 0.016, making it the selected algorithm.

    Keywords: Facility Location, Vehicle Routing, Allocation, Inventory, Meta-Heuristic Algorithm
  • داور گیوکی*، جواد ابراهیمی، مریم سرشار
    الگوریتم خفاش، نمونه ای از الگوریتم های فراابتکاری از خانواده هوش جمعی است که براساس رفتار پژواک یابی خفاش بنا شده است. این الگوریتم تنوع راه حل را با استفاده از روش تنظیم فرکانس حفظ می کند که می تواند به سرعت و به صورت کارآمد از مرحله اکتشاف به بهره برداری تغییر مکان دهد. بنابراین، هنگامی که به یک راه حل سریع و دقیق نیاز باشد، این الگوریتم به یک بهینه ساز کارآمد برای هر برنامه کاربردی تبدیل می شود. الگوریتم خفاش با وجود فواید زیاد و کاربردی، دارای معایبی نیز است. یکی از این معایب که باعث کاسته شدن کارایی آن می شود، به دام افتادن در بهینه محلی است. برای حل مشکل مذکور در این پژوهش موقعیت و سرعت جمعیت اولیه را به سه روش با فرمول های مختلف بروز کرده، این امر باعث می شود تا پاسخ نهایی مسئله در بهینه محلی به دام نیفتد و تنوع در جمعیت رخ دهد. در این مقاله عملکرد الگوریتم خفاش بهبودیافته روی 11 تابع هدف نمونه بررسی و با سایر الگوریتم های مشابه مقایسه شده است، که نهایتا نتایج حاصل شده نشان از برتری و دقت این الگوریتم نسبت به نمونه های مشابه دارد.
    کلید واژگان: بهینه سازی، هوش جمعی، الگوریتم فراابتکاری، بهینه محلی، الگوریتم خفاش
    Davar Giveki *, Javad Ebrahimi, Maryam Sarshar
    The bat algorithm is an example of meta-heuristic algorithms from the collective swarm intelligence, which is based on the echolocation behavior of bats. This algorithm preserves the diversity of the solution by using a frequency tuning method that can quickly and efficiently shift from exploration to exploitation. Therefore, when a fast and accurate solution is needed, this algorithm becomes an efficient optimizer for any application. Although the bat algorithm has many practical benefits, it also has some disadvantages. One of these disadvantages that reduces its efficiency is being trapped in the local optimum. To solve the mentioned problem in this research, the position and speed of the initial population is updated in three ways with different formulas, this makes the final answer of the problem not trapped in the local optimum and diversity occurs in the population. In this article, the performance of the improved bat algorithm on 11 sample objective functions has been investigated and compared with other similar algorithms, and finally the results show the superiority and accuracy of this algorithm compared to similar samples.
    Keywords: Optimization, Swarm Intelligence, Meta-Heuristic Algorithm, Local Optimum, BAT Algorithm
  • L. Coelho, M. Shahrouzi*, N. Khavaninzadeh

    Diagrids are of practical interest in high-rise buildings due to their architectural configuration and efficiency in withstanding lateral loads by exterior diagonal members. In the present work, diagrid models are screened based on a sizing optimization approach. Section index of each member group is treated as a discrete design variable in the optimization problem to be solved. The structural constraints are evaluated due to Load and Resistant Design Factor regulations under both gravitational and wind loadings. The research is threefold: first, falcon optimization algorithm is utilized as a meta-heuristic paradigm for such a large-scale and highly constrained discrete problem. Second, the effect of geometry variation in diagrids on minimal structural weight is studied for 18 diagrid models via three different heights (12, 20 and 30 stories) and three diagrid angles. Third, distinct cases of rigid and flexible bases are compared to study the effect of such boundary conditions on the results. The effect of soil flexibility beneath the foundation on the optimal design was found highly dependent on the diagrid geometry. The best weight and performance in most of the treated examples belong to the geometry that covers two stories by every grid line on the flexible-base.

    Keywords: Tall Building, Diagrid Layout, Discrete Constrained Optimization, Meta-Heuristic Algorithm
  • Nguyen Cong Chinh*

    This paper presents an intelligent meta-heuristic algorithm, named improved equilibrium optimizer (IEO), for addressing the optimization problem of multi-objective simultaneous integration of distributed generators at unity and optimal power factor in a distribution system. The main objective of this research is to consider the multi-objective function for minimizing total power loss, improving voltage deviation, and reducing integrated system operating costs with strict technical constraints. An improved equilibrium optimizer is an enhanced version of the equilibrium optimizer that can provide better performance, stability, and convergence characteristics than the original algorithm. For evaluating the effectiveness of the suggested method, the IEEE 69-bus radial distribution system is chosen as a test system, and simulation results from this method are also compared fairly with many previously existing methods for the same targets and constraints. Thanks to its ability to intelligently expand the search space and avoid local traps, the suggested method has become a robust stochastic optimization method in tackling complex optimization tasks.

    Keywords: Meta-Heuristic Algorithm, Improved Equilibrium Optimizer, Voltage Deviation, Total Power Loss, Distributed Generator
  • Adel Pourghader Chobar, Hamid Bigdeli *, Nader Shamami
    By providing timely transportation and dispatch of raw materials and finished goods, freight transport plays an essential role in industries, commercial activities, and trade war industries. It also has a significant impact on the overall performance of associated organizations and the ultimate costs of their products. Therefore, freight transport providers are under pressure to decrease costs and increase their service levels and should overcome these pressures by redesigning and improving their logistics processes on strategic, tactical, and operational levels. In this research, a multi-objective model is proposed for hub location in the field of war equipment under uncertainty. The first objective is to minimize costs, the second objective is to maximize the fulfillment of demands, and the third objective is to minimize congestion on the routes. Taking into account the parameters in the state of uncertainty, the mathematical model is modeled in a robust state and a robust counterpart model of the problem is proposed. In order to solve the problem on a small scale, the exact epsilon constraint method is used in GAMS software. Also, meta-heuristic approaches of grey wolf optimizer (GWO) and non-dominated sorting genetic algorithm (NSGA-II) are used to solve the model in medium and large dimensions. Next, the solution time of two algorithms was compared. 10 numerical experiments with different dimensions were designed and implemented through GWO and NSGAII algorithms. The results showed that the time to solve the GWO problem is less than the other algorithm. Finally, proper performance indicators are used to compare the performance of the used algorithms, and as a result of solving several numerical examples and calculating their performance indicator, it is concluded that the GWO algorithm has a better performance in solving the model.
    Keywords: Hub Location, War Equipment, Uncertainty, Meta-Heuristic Algorithm
  • Ali Roghani, Akbar Alem Tabriz *, Mohammad Mehdi Movahedi, Gholam Hassan Shirdel
    The purpose of this research is to optimize the use of water resources in dams in Khuzestan province. For this purpose, in this research, we seek to optimize the cost and time of sending water to each of the cities from the total dams in Khuzestan province. The model is solved using the deterministic epsilon constraint method and NSGA-II and MOPSO algorithms meta-heuristically. According to the results presented in this research, the water supply from the Balaroud dam to the cities of Ahvaz, Izeh, Abadan, Baghmolk, and Bandar Imam Khomeini has not been determined to be optimal. The same dam sends a certain amount of water to the cities of Andimeshk, Dezful, Shush, Shushtar and Gotvand. The results showed that NSGA-II has a more acceptable performance than the MOPSO algorithm from the point of view of three criteria, and the MOPSO algorithm has a better condition than the NSGA-II algorithm only in terms of the distance to the ideal point. In addition, according to the sensitivity analysis, it has been determined that the increase in water demand can increase the shipping time by 1.9% and the shipping cost by 60%. Therefore, the effect of water demand is more on time and not on cost. Increasing the budget can have an effect on cost and time, which of course has more effect on time than cost.
    Keywords: Water Management Of Dams, Optimization, Epsilon Constraint, Meta-Heuristic Algorithm
  • Seyed Mohammadhassan Hosseini, Hossein Amoozad Khalili *, Moujan Shirali

    Scheduling for flexible flowshop environments is generally limited by resources such as manpower and machines. However, the majority of efforts tackle machines as the only constrained resource. This paper aims to investigate the problem of scheduling in flexible flowshop environments considering different skills as human resource constraints to minimize the total completion time. In this way, a mathematical model of complex integer linear programming is presented for solving small-sized problems in a reasonable computational time. In addition, due to the NP-hard nature of the problem, a whale hybrid optimization algorithm is tuned to solve the problem in large-sized dimensions. In order to evaluate the performance of the proposed optimization algorithm, the results are compared with five known optimization algorithms in the research background. All evaluations and results show the good performance of the whale hybrid algorithm. Especially, the final solution of the proposed algorithm shows a 0.75% deviation of the best solution in solving different instances on large-scale sizes. However, the genetic algorithm, memetic global and local search algorithm, and hybrid salp swarm algorithm are in the next ranks with 3.31, 3.52, and 4.02 percent respectively. In addition, proper discussions and managerial insights are provided for the relevant managers.

    Keywords: Flexible Flowshop, Scheduling, Meta-Heuristic Algorithm, Manpower Skills
  • آرزو اسعد سامانی، سید روح الله حسینی واعظ*
    در علم مهندسی سازه و زلزله، با مطرح شدن طراحی لرزه ای براساس عملکرد، بسیاری از پژوهشگران تحقیقات خود را در این زمینه متمرکز کرده اند. هدف از این نوع طراحی، قادر ساختن مهندسان به طراحی سازه هایی است که عملکردشان قابل پیش بینی باشد. یک نوع خاص نامنظمی در سازه، پس نشستگی آن در ارتفاع می باشد که تاثیر قابل ملاحظه ای بر عملکرد سازه دارد و موضوعی است که همواره مورد بررسی پژوهشگران قرار می گیرد. در این مقاله، به طراحی بهینه مبتنی بر عملکرد دو مثال قاب خمشی فولادی سه طبقه پرداخته شده است. در هر دو مثال، قاب های فولادی در دو گام مستقل، با الگوی بارگذاری جانبی براساس شکل مود اول مورد تحلیل واقع شده اند. در صورت رضایت بخش بودن نتایج حاصل از تحلیل در گام اول، قاب ها در گام دوم نیز تحلیل شده و مورد بررسی قرار گرفته اند. از آنجایی که رایج ترین روش تحلیل برای ارزیابی عملکرد لرزه ای، روش تحلیل استاتیکی غیرخطی می باشد، این روش با استفاده از نرم افزار OpenSees به عنوان روش تحلیل قاب ها درنظر گرفته شده است. پروسه بهینه سازی در این مطالعه، با استفاده از دو الگوریتم فراابتکاری EVPS و ECBO انجام شده است. قیود مسئله معیارهای پذیرش قاب خمشی فولادی طبق آیین نامه FEMA 356، دریفت طبقات، ضریب لاغری ستون ها و ضوابط طراحی اتصالات تیر و ستون می باشند. نتایج نشان می دهد که بهترین پاسخ بهینه توسط الگوریتم EVPS یافته شده است و الگوریتم EVPS عملکرد بهتری نسبت به الگوریتم ECBO داشته است. نسبت دوران پلاستیک مفاصل تشکیل شده در المان ها به مقادیر مجاز آن ها برای بهترین پاسخ کمتر از یک می باشد که نشان می دهد این مفاصل در محدوده تعریف شده مجاز برای هر سطح عملکرد قرار گرفته اند.
    کلید واژگان: طراحی مبتنی بر عملکرد، بهینه سازی، الگوریتم های فراابتکاری، تحلیل استاتیکی غیرخطی، قاب خمشی فولادی دو بعدی، پس نشستگی در ارتفاع
    Arezoo Asaad Samani, Seyed Rohollah Hosseini Vaez *
    In the science of structural and earthquake engineering, with the emergence of performance-based design (PBD), many researchers have focused their research on this field. The aim of PBD is to enable engineers to design structures that offer predictable performance. Height set-back in structures is a particular type of irregularity that has a significant effect on the performance of the structures and is a subject that has always been investigated by researchers. In this study, the optimal performance-based design of two three-story steel moment frames is performed. For each example, the frame is analyzed with a lateral loading pattern based on the first mode shape in two independent steps. If the results of the analysis in the first step are satisfactory, the frame has been analyzed in the second step. Since the most common analysis method used in PBD is nonlinear static analysis, this method is considered as a frame analysis method using OpenSees software. In this study, the optimization process is performed using two meta-heuristic algorithms, EVPS and ECBO. The constraints of the problem are the acceptance criteria of steel moment frame according to FEMA 356, inter-story drift, slenderness ratio of columns, and design criteria of the column and beam joints. The results show that the best solution obtained by the EVPS algorithm and the EVPS has better performance than ECBO. Also, the ratio of plastic hinge rotation to the allowable values for the best solution was smaller than the unity for all plastic hinges, which indicates an acceptable amount of plastic hinge rotation.
    Keywords: Performance-Based Design Optimization, Meta-Heuristic Algorithm, Nonlinear Static Analysis, 2D Steel Moment Frame, Height Set-Back
  • Abbas Toloie Ashlaghi, Amir Daneshvar *, Adel Pourghader Chobar, Fariba Salahi

    In this article, a sustainable network of distribution of agricultural items with suppliers, distribution centers, and retailers is considered. The main purpose of presenting the mathematical model in this article is to determine the optimal number and location of suppliers, assigning suppliers to distribution centers and optimal routing for the distribution of agricultural items to retailers in a predefined time window. Also, determining the optimal amount of inventory and the reorder point in retailers and distribution centers is another problem decision. To model the problem, some parameters of the model were considered non-deterministic and were controlled by the probabilistic fuzzy method. The results of solving numerical examples in different sizes showed that with the increase of the total costs of the distribution network of agricultural items, the amount of greenhouse gas emissions decreases, and the employment rate increases. Also, with the increase of the uncertainty rate, due to the increase of the real demand and the change in the optimal amount of production, distribution, storage and reorder point, the values of all the objective functions also increase. It was also observed by solving different numerical examples with NSGA II and MOGWO algorithms, these algorithms have been able to solve the problem in a much shorter period than the epsilon constraint method, and comparison indicators such as NPF, MSI, SM, and computing time show These algorithms have a high efficiency in solving numerical examples of the problem of the distribution network of agricultural items.

    Keywords: Stable Network, Agricultural Items, Uncertainty, Meta-Heuristic Algorithm, Jimenez Fuzzy, Time Window
  • حمیدرضا شاه مرادی قمی، حسین نادرپور، سید روح الله حسینی واعظ*
    طراحی دیوار برشی یکی از مسایل مهم در رشته مهندسی عمران محسوب می شود که به علت وجود پارامترهای متنوع و ناهمگنی مصالح آن، همواره مورد توجه محققان در شاخه بهینه سازی قرار گرفته است. هدف از این تحقیق طراحی بهینه چیدمان دیوار برشی در ارتفاع قاب خمشی سه بعدی بتن آرمه معمولی است. از آنجایی که ساخت سازه های بتن آرمه مقادیر زیادی فولاد و بتن مصرف می کند، بهینه سازی طراحی سازه های بتن آرمه با هدف کاهش تاثیرات زیست محیطی، در سال های اخیر توجه زیادی از سوی محققان را به خود جلب کرده است. از این رو به منظور حفظ ارزش محیط زیست و کاهش انتشار گازهای گلخانه ای، تابع هدف بر مبنای کاهش انتشار co2 ناشی از مصالح مصرفی در دیوار برشی (شامل فولاد و بتن)، فرمول نویسی شده است. از سوی دیگر به منظور بهینه یابی طراحی، از الگوریتم فراابتکاری کلاغ و جهت برآورده کردن قیود مساله، از تابع هدف به روش پنالتی استفاده شده است. همچنین به منظور ساده سازی فضای جستجو، انتخاب های دیوار برشی به صورت جعبه پیشنهادی گسسته، کدنویسی و مشخص گردیده است. به علاوه قیدهای کنترل تغییر مکانی و نیرویی در خصوص دیوار برشی و المان های مرزی اعمال شده است تا هم زمان طراحی و چیدمان دیوارها به درستی صورت پذیرد. در این تحقیق یک قاب خمشی بتن آرمه به همراه دیوار برشی در هفت طبقه به کمک نرم افزار اپن سیس مدل سازی و تحلیل شده است. نتایج طراحی بهینه دیوارهای برشی نشان می دهد که الگوریتم توانسته است با اقنای تمام قیود مساله، به چیدمان مطلوب دست یابد.
    کلید واژگان: سازه بتن آرمه سه بعدی، الگوریتم فراابتکاری، طراحی بهینه، چیدمان دیوار برشی در ارتفاع، انشار CO2
    Hamidreza Shahmoradi Qomi, Hosein Naderpour, Seyed Rohollah Hoseini Vaez *
    Shear wall design is one of the optimization problems, due to the presence of various parameters and its inhomogeneity, it has always attracted the attention of researchers and structural designers. The purpose of this research is to design a shear wall and its optimal arrangement in the height of an intermediate reinforced concrete three-dimensional structure. Considering the necessity of preserving the environment and reducing the emission of greenhouse gases, which are mostly made up of carbon gas, the objective function has been formulated based on the reduction of CO2 emission caused by the materials used in the shear wall. On the other hand, in order to optimize the design, CSA meta-heuristic algorithm has been used, and to satisfy the constraints of the problem, the objective function has been used by the penalty method. Also, in order to simplify the search space, a number of shear walls have been pre-designed and discretely coded. In addition, displacement and force constraints have been applied regarding the shear wall and boundary elements so that the design and layout of the walls can be done correctly. In this research, a reinforced concrete moment-resisting frame with a shear wall in seven stories has been modeled and analyzed with the OpenSees software. Based on the optimal design of shear walls, the algorithm was successful in achieving the desired layout by satisfying all constraints.
    Keywords: 3D RC structure, meta-heuristic algorithm, Optimal design, Shear wall layout in height, CO2 Emissions
  • A.H. Karimi*, A. Bazrafshan Moghaddam

    Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.

    Keywords: Nonlinear Analysis, Finite Element Method, Meta-Heuristic Algorithm, Continuum Mechanics, Enriched Firefly Algorithm, Large Deformation, Optimization
  • جلال رئیسی گهرویی، زهرا بهشتی*
    از آنجا که پیش بینی مصرف برق از موارد مهم مدیریت انرژی هر کشور محسوب می شود، در سال های اخیر روش های مختلفی براساس هوش مصنوعی برای آن ارایه شده است. یکی از این روش ها، استفاده از شبکه های عصبی مصنوعی است. برای آن که این شبکه ها عملکرد خوبی داشته باشند، باید به خوبی آموزش ببینند. یکی از متداول ترین الگوریتم های آموزش مورد استفاده در این شبکه ها، الگوریتم پس انتشار خطاست که براساس گرادیان نزولی است. از آنجا که الگوریتم های مبتنی برگرادیان نزولی ممکن است به نقاط بهینه محلی گرفتار شوند، در برخی از مسایل راه حل خوبی ارایه نمی دهند. از این رو برای آموزش این شبکه ها می توان از الگوریتم های بهینه سازی مانند الگوریتم های فراابتکاری که امکان فرار از بهینه های محلی را دارند، استفاده نمود. در این تحقیق، الگوریتم فراابتکاری جدیدی به نام الگوریتم بهینه سازی زغن معرفی می گردد که از زندگی اجتماعی زغن ها در طبیعت الهام گرفته شده است و دارای مزایایی مانند تعداد پارامترهای کم، قابلیت اکتشاف و سرعت همگرایی خوب، است. کارایی الگوریتم پیشنهادی، با چند الگوریتم جدید فراابتکاری روی توابع محک CEC2018 و برای آموزش شبکه عصبی در پیش بینی مصرف برق ایران در زمان های اوج مصرف بار، مقایسه گردیده است. نتایج حاصل، نشان می دهد الگوریتم پیشنهادی راه حل بهتری با خطای کمتری، در مقایسه با الگوریتم های رقیب به دست می آورد.
    کلید واژگان: الگوریتم های فراابتکاری، الگوریتم بهینه سازی زغن، پیش بینی مصرف برق، شبکه های عصبی پرسپترون چندلایه
    Jalal Raeisi-Gahruei, Zahra Beheshti *
    Since the electricity consumption’s prediction is one of the most important aspects of energy manage ment in each country, various methods based on artificial intelligence have been proposed to manage it. One of these methods is Artificial Neural Networks (ANN). To improve the performance of ANNs, an efficient algorithm is necessary to train it. Back Propagation (BP) algorithm is the most common algorithm employed in training ANNs, which is based on gradient descent. Since BP may fall in local optima, it cannot provide a good solution in some problems. To overcome this shortcoming, optimiz ation algorithms like meta-heuristic algorithms can be applied to train ANNs. In this study, a new meta-heuristic algorithm called Red Kite Optimization Algorithm (ROA) is introduced, which is inspired by the social life of red kites in nature. The ROA has several advantages such as simplicity in structure and implementation, having few parameters and good convergence rate. The perfprmance of ROA is compared with some recent metaheuristic algorithms on benchmark functions of CEC2018. Also, it is employed to train Multi-Layer Perceptron (MLP) for the electricity consumption prediction at peak load times in Iran. The results show the good performance of proposed algorithm compared with competitor algorithms in terms of solution accuracy and convergence speed.
    Keywords: electricity consumption prediction, Meta-heuristic Algorithm, Multi-Layer Perceptron Neural network, red kite optimization algorithm
  • ابراهیم شفیعی*، سید محمدرضا موسوی میرکلائی، میثم بیات

    مهاجم در حمله جعل هویت، پیام های درخواست جعلی خود را برای کامپیوتر سرویس دهنده مقصد می فرستد و چنین وانمود می کند که درخواست ها از یک مبدا که گره ای در شبکه با آدرس معتبر و قابل اعتماد است، فرستاده شده اند. در این مقاله از روش هوشمند برای تشخیص حضور چند کاربر جعلی استفاده شده است. همچنین، از پردازش تکاملی برای بهبود صحت و دقت تشخیص تعداد مهاجمین و تعیین موقعیت تقریبی آنها بهره برده شده است. شبکه عصبی مصنوعی با تشخیص تغییر الگوی سیگنالی بسته های IP دریافت شده از یک گره در نقطه دسترسی (AP)، فریب را آشکار می کند. الگوریتم فراابتکاری رقابت استعماری نیز با استفاده از خوشه بندی، تعداد مهاجمین را مشخص می نماید. این الگوریتم با استخراج ویژگی های قدرت سیگنال، فاز سیگنال و انرژی سیگنال دریافتی می تواند الگوی سیگنال کاربران با آدرس IP مشخص را خوشه بندی نماید، به گونه ای که در بدترین حالت با احتمال 98 حملات را به درستی تشخیص می دهد. در نتیجه، اگر تعداد خوشه ها از تعداد آدرسIPهای فعال شبکه بی سیم بیشتر باشد، این تعداد خوشه های مازاد، تعداد مهاجمین را نشان می دهد. نتایج شبیه سازی الگوریتم پیشنهادی نشان می دهد که روش پیشنهادی دارای کارآیی 99 درصد در دقت و 98 درصد در صحت تشخیص حملات است.

    کلید واژگان: امنیت شبکه بیسیم، فریب چندگانه، هوش مصنوعی، الگوریتم فراابتکاری
    E. Shafiee *, MohammadReza Mosavi, M. Bayat

    In the spoofing attack, the attacker sends his fake request messages to the destination server computer and pretends that the requests were sent from a source that is a node in the network with a valid and reliable IP address. In this article, an intelligent method is introduced to detect the presence of several fake users. Evolutionary processing has also been used to improve the accuracy and precision of detecting the number of attackers. The artificial neural network reveals the spoofing attack by detecting the change in the signal pattern of the IP packets received from a node in the access point. The metaheuristic algorithm of imperial competition also determines the number of attackers using clustering. By extracting the features of signal strength, signal phase, and received signal energy, this algorithm can cluster the signal pattern of users with a specific IP address. In the worst case, it correctly detects attacks with a probability of 98. As a result, if the number of clusters is more than the number of active IP addresses of the wireless network, this number of excess clusters shows the number of attackers. The simulation results of the proposed algorithm show that it has 99% precision and 98% accuracy in detecting attacks.

    Keywords: Wireless Network Security, IP Spoofing Attack, artificial intelligence, Meta-heuristic Algorithm
  • A. H. Karimi *, A. Bazrafshan Moghaddam

    Most industrial-practical projects deal with nonlinearity phenomena. Therefore, it is vital to implement a nonlinear method to analyze their behavior. The Finite Element Method (FEM) is one of the most powerful and popular numerical methods for either linear or nonlinear analysis. Although this method is absolutely robust, it suffers from some drawbacks. One of them is convergency issues, especially in large deformation problems. Prevalent iterative methods such as the Newton-Raphson algorithm and its various modified versions cannot converge in certain problems including some cases such as snap-back or through-back. There are some appropriate methods to overcome this issue such as the arc-length method. However, these methods are difficult to implement. In this paper, a computational framework is presented based on meta-heuristic algorithms to improve nonlinear finite element analysis, especially in large deformation problems. The proposed method is verified via different benchmark problems solved by commercial software. Finally, the robustness of the proposed algorithm is discussed compared to the classic methods.

    Keywords: Nonlinear analysis, finite element method, meta-heuristic algorithm, continuum mechanics, enriched firefly algorithm, large deformation, optimization
  • Hamed Nozari*, Maryam Rahmaty

    In this paper, the modeling of a make-to-order problem considering the order queue system under the robust fuzzy programming method is discussed. Considering the importance of timely delivery of ideal demand, a four-level model of suppliers, production centers, distribution centers, and customers has been designed to reduce total costs. Due to the uncertainty of transportation costs and ideal demand, the robust fuzzy programming method is used to control the model. The analysis of different sample problems with LCA, PSO, and SSA methods shows that with the increase in the uncertainty rate, the amount of ideal demand has increased and this has led to an increase in total costs. On the other hand, with the increase of the stability coefficients of the model, contrary to the reduction of the shortage costs, the total costs of the model have increased due to transportation. Also, the analysis showed that with the increase in the number of servers in the production and distribution centers, the average waiting time for customers' order queues has decreased. Because by reducing the waiting time, the total delivery time of customer demand decreases, and the amount of actual demand increases. On the other hand, due to the lack of significant difference between the OBF averages among the solution methods, they were prioritized and SSA was recognized as an efficient algorithm. By implementing the model in a real case study in Iran for electronic components, it was observed that 4 areas of the Tehran metropolis (8-18-16-22) were selected as actual distribution centers. Also, the costs of the whole model were investigated in the case study and the results show the high efficiency of the solution methods in solving the MTOSC problem.

    Keywords: order-based manufacturing, order queuing system, uncertainty, robust fuzzy programming, meta-heuristic algorithm
  • Samira Sameye, Javad Rezaeian Zaidi *, MohammadReza Lotfi

    This research proposes and solves a mathematical problem of parallel machine scheduling to minimize the total completion time and energy cost. This research aims to design and optimize a multi-objective mathematical model by minimizing energy consumption and total completion time for the parallel machine scheduling problem in Semnan Polyethylene Factory. First, the mathematical model of the problem is provided, and then the solution method is investigated using the epsilon constraint method in the GAMS optimization software and the meta-heuristic imperialist competitive algorithm (ICA). The mathematical model is validated using GAMS software and the constraint epsilon method and a real problem is implemented in large dimensions regarding the case study of the polyethylene factory in Semnan province using the meta-heuristic ICA. Finally, the performance of the ICA is measured in terms of the RPI index for small dimensions and the MID index for examples with large dimensions. Numerical results show that the value of the index for distance from the ideal point in the ICA is lower than that of the index obtained from solving the problem in GAMS. With these interpretations, it can be concluded that the ICA has a better performance than GAMS for optimizing the parallel machine scheduling problem in this research. According to the obtained answers, it can be concluded that with the increase in the time to do a task, the time to complete all tasks also increases and the cost of energy remains constant. While the cost of doing the task and the price of the electricity signal increase, energy costs increase and the time to complete tasks remains constant.

    Keywords: Scheduling problem, parallel machines, energy cost, meta-heuristic algorithm
  • E. Arabzadeh, S.M.T. Fatemi Ghomi *, B. Karimi
    Home health care service has significant importance in modern societies. In most of the active institutions in this field, the traditional procedure is used for planning and managing health personnel and determining patient visit sequence. This procedure usually causes an increase in costs and reduces patients’ satisfaction. This paper, for the first time, groups the patients in a model according to the level of emergency and discriminating in their examination. Considering dependency and independence of patient visits to each other, assuming multi-depot and multi-period issues are attractive aspects of the proposed model. The model is solved with GAMS software for small scale and two variable neighborhood search algorithm and simulated annealing algorithm are used to solve large scale problems and their performances are compared. The results indicate minimizing total cost and also increasing patients` satisfaction by the proposed model.
    Keywords: routing, Scheduling, Home health cares, mathematical model, meta-heuristic algorithm
  • Mehrzad Torkzadeh, Hamed Reza Zarif Sanayei *, Reza Kamgar

    Channels have various types of cross-sectional shapes, including trapezoidal, rectangular, semi-circular, parabolic, chain-curved, semi-cubic parabolic, egg-shaped, and circular as the most common shapes. A channel designer has many design options in different conditions, including hydraulic, economic, and hydrological conditions, leakage, etc. Among the above-mentioned sections, the first two have a horizontal bottom while the other sections are curve-shaped with bottom curvature. The primary goal in the design of hydraulic channels is to achieve the maximum flow capacity considering the minimum channel construction cost. A variety of studies has been conducted on the different types of hydraulic channels so far, each dealing with the subject from a certain perspective. However, most of the studies have focused on circular, rectangular and trapezoidal channels. This study has focused on the parabolic channel. Genetic algorithm (GA) and particle swarm optimization (PSO) or GRG algorithms and their combination are usually used for optimization. However, this research adopts a novel and updated meta-heuristic algorithm, namely the Harris Hawks Optimization (HHO) algorithm, to optimize the parabolic channel with a fixed roughness coefficient and determine the optimal dimensions of the channel with different flow rates. This channel uses different flow rates, namely 50, 100, 150, 200, 250, and 300 m3/s to solve the optimization problem. Finally, it was found that the lowest construction cost and the highest efficiency for water supply is achieved with a roughness coefficient of 0.015 and a flow rate of 100 m3/s.

    Keywords: Harris Hawks, Meta-heuristic Algorithm, Optimization, parabolic channel
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال