non-dominated sorting genetic algorithm-ii
در نشریات گروه فنی و مهندسی-
In today's competitive market, manufacturers and service providers are continuously seeking ways to reduce costs and save time to gain a competitive edge. One of the most significant challenges they face is the vehicle routing problem (VRP), which is crucial due to its direct impact on the delivery time of services or products. Efficient vehicle routing not only enhances delivery performance but also optimizes the overall network, resulting in reduced operational costs. This study focuses on evaluating the VRP specifically for trucks while incorporating sustainability indicators into the analysis. The key sustainability indicators considered include social, economic, and environmental aspects. By integrating these indicators, the study aims to address multiple objectives simultaneously: reducing delivery time, minimizing costs, and mitigating the environmental impact of vehicle operations.The primary objective of this research is to minimize overall costs, fuel consumption, and route complexity associated with truck deliveries. Given the growing concern over environmental issues, there is a strong emphasis on improving methods to reduce greenhouse gas (GHG) emissions and streamline logistics processes. The research addresses these concerns by proposing a model that not only aims to enhance operational efficiency but also contributes to environmental protection and social responsibility.To achieve these objectives, the study employs advanced optimization techniques, specifically the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO). These methods are utilized to solve the VRP while balancing the trade-offs between various objectives, such as cost reduction, fuel efficiency, and route optimization.The results of the study indicate that the proposed model successfully improves aspects of environmental protection and social responsibility while simultaneously addressing economic concerns. The integration of sustainability indicators into the vehicle routing problem provides a comprehensive approach to optimizing logistics operations, highlighting the importance of considering environmental and social factors alongside economic performance.Overall, this research contributes to the field by offering a refined model for tackling the VRP, with a focus on sustainability. The findings underscore the potential for optimization algorithms to drive improvements in both operational efficiency and environmental stewardship, ultimately supporting more sustainable and socially responsible practices in the transportation and logistics industry.Keywords: Exchange Locations, Vehicle Routing Problem, Algorithms, Non-Dominated Sorting Genetic Algorithm-II, Multi-Objective Particle Swarm Optimization, Metaheuristic, Time Constraint
-
Exploratory drilling is one of the most important and costly stages of mineral exploration procedures, so the continuation of mining activities depends on the gathered data during this stage. Due to the importance of cost and time-saving in the performance of mineral exploration projects, the effective parameters for reducing the cost and time of drilling activities should be investigated and optimized. Road construction and the sequence of the drilling boreholes by drilling rigs are among these parameters. The main objectives of this research were to optimize the overall road construction cost and the difference in length drilled by each drilling rig. The problem has been modeled as a Multi-Objective Multiple Traveling Salesman Problem (MOmTSP) and solved by the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally; the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method has been used to find the optimal solution among the solutions obtained by the NSGA-II.
Keywords: Exploratory drilling, Multi-Objective Multiple Traveling Salesman Problem, Non-dominated Sorting Genetic Algorithm-II, Optimization, Technique for Order Preference by Similarity to Ideal Solution -
ظهور تکنولوژی اینترنت اشیا مفهوم شهر هوشمند را ایجاد کرده که در این پارادایم، دستگاه های هوشمند به عنوان یک ضرورت شناخته می شوند. برنامه های کاربردی نصب شده بر روی این دستگاه ها باعث تولید حجم زیادی داده می شوند که اغلب نیازمند پردازش بلادرنگ می باشند. بااین حال، این دستگاه ها دارای قابلیت های محدودی هستند و قادر به پردازش حجم زیاد داده ها نمی باشند. انتقال همه ی این داده ها به مراکز داده ی ابری منجر به استفاده از پهنای باند، تاخیر، هزینه و مصرف انرژی بیشتر می شود. ازاین رو، ارایه خدمات به برنامه های کاربردی شهر هوشمند حساس به تاخیر در ابر یک موضوع چالش برانگیز است و پاسخگویی به نیازمندی های این برنامه ها، مستلزم استفاده از پارادایم ترکیبی ابر و مه می باشد. رایانش مه به عنوان مکملی برای ابر امکان می دهد تا داده ها در نزدیکی دستگاه های هوشمند پردازش شوند. بااین حال، منابع موجود در لایه ی مه ناهمگن و دارای قابلیت های متفاوتی می باشند، بنابراین زمان بندی مناسب این منابع از اهمیت زیادی برخوردار است. در این مقاله، به مساله ی زمان بندی وظایف برای برنامه های کاربردی شهر هوشمند در محیط ابر-مه پرداخته شده است. به این منظور، مساله ی زمان بندی وظیفه به صورت یک مساله ی بهینه سازی چند هدفه مدل شده است که اهداف آن، کاهش تاخیر ارایه ی خدمات و مصرف انرژی سیستم با در نظر گرفتن قید مهلت زمانی می باشد. سپس به منظور حل این مساله و دستیابی به استراتژی زمان بندی مناسب، الگوریتم ژنتیک چند هدفه با مرتب سازی نامغلوب با اپراتورهای سفارشی به کار گرفته شده است. علاوه براین، به منظور بهبود تنوع جمعیت و سرعت همگرایی الگوریتم پیشنهادی، برای تولید جمعیت اولیه از ترکیب روش های نگاشت بی نظمی و یادگیری مبتنی بر تضاد استفاده شده است. همچنین رویکرد مبتنی بر تابع جریمه برای راه حل هایی که قید مهلت زمانی را برآورده نمی کنند، به کار گرفته شده است. نتایج شبیه سازی ها نشان می دهد که الگوریتم زمان بندی پیشنهادی، در مقایسه با بهترین رقیب خود، تاخیر ارایه ی خدمات، زمان انتظار، تاخیر اجرای وظیفه و مصرف انرژی سیستم را به ترتیب 1/49، 1/70، 2/7 و 1/86 درصد بهبود می دهد. علاوه براین، با تخصیص مناسب وظایف به گره های محاسباتی در مقایسه با بهترین رقیب، درصد وظایفی که مهلت زمانیشان را از دست می دهند به میزان 1/89 درصد کاهش می دهد.کلید واژگان: زمان بندی وظایف، شهر هوشمند، رایانش مه، الگوریتم ژنتیک چند هدفه با مرتب سازی نامغلوبThe advent of Internet of Things (IoT) technology has led to the concept of the smart city, in which smart devices are recognized as a necessity. The applications installed on these devices generate large volumes of data that often require real-time processing. However, these devices have limited capabilities and are not capable of processing large amounts of data. Moving all this data to cloud data centers results in higher bandwidth usage, latency, cost and energy consumption. Therefore, providing services to delay-sensitive smart city applications in the cloud is a challenging issue, and meeting the requirements of these applications requires the use of a hybrid cloud and fog paradigm. Fog computing as a complement to the cloud allows data to be processed near smart devices. However, the resources in the fog layer are heterogeneous and have different capabilities, hence, appropriate scheduling of these resources is of great importance. In this paper, the problem of task scheduling for the smart city applications in the cloud-fog environment has been addressed. To this purpose, the task scheduling problem has been modeled as a multi-objective optimization problem, which aims to minimize service delay and energy consumption of the system under deadline constraint. Then, in order to solve this problem and achieve an appropriate scheduling strategy, non-dominated sorting genetic algorithm II (NSGA-II) with customized operators has been applied. In addition, in order to improve the diversity of the population and the convergence speed of the proposed algorithm, a combination of chaotic map and opposition-based learning methods have been used to generate the initial population. Also, the approach based on the penalty function has been employed to penalize the solutions that do not meet the deadline constraint. The simulation results reveal that the proposed scheduling algorithm, compared to its best competitor, improves service response delay, waiting time, execution delay and system energy consumption by 1.49%, 1.70%, 2.7% and 1.86%, respectively. Furthermore, by properly assigning tasks to the computing nodes, compared to the best competitor, the percentage of missed-deadline tasks is reduced by 1.89%.Keywords: Task scheduling, Smart city, Fog Computing, Non-Dominated Sorting Genetic Algorithm II
-
Journal of Optimization in Industrial Engineering, Volume:14 Issue: 31, Summer and Autumn 2021, PP 83 -98In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Water Cycle Algorithm (MOWCA), Multi-objective Particle Swarm Optimization (MOPSO) and Non-Dominated Sorting Genetic Algorithm- II (NSGA-II) are developed. The performance of the algorithms is evaluated by solving various test problems in small, medium, and large scale. Four performance measures, including Diversity, Hypervolume, Number of Non-dominated Solutions, and CPU-Time, are considered to evaluate the effectiveness of the algorithms. In the end, the superior algorithm is determined by Technique for Order of Preference by Similarity to Ideal Solution method.Keywords: Transportation-Location-Routing, reliability, Multi-Objective Grey Wolf Optimizer, Multi-Objective Water Cycle Algorithm, Multi-objective particle swarm optimization, Non-Dominated Sorting Genetic Algorithm- II
-
کاهش در مصرف سوخت منجر به کاهش انتشار گازهای گلخانه ای و هزینه های ارائه خدمات به مشتریان شده و در نتیجه رضایت مشتریان و کاهش اثرات مخرب زیست محیطی را به دنبال دارد. بدین منظور در این مقاله تمرکز بر بهینه سازی و برنامه ریزی حرکت کامیون های ورودی و خروجی و زنجیره تامین سبز با وجود چند بارانداز متقاطع و با دو هدف کمینه سازی توالی حمل ونقل کامیون ها و انتشار گاز دی اکسید کربن در داخل زنجیره تامین است ازآنجاکه مدل مقاله از نوع برنامه ریزی خطی عدد صحیح صفر و یک بوده و متعلق به مسائل NP-hard است زمان حل آن ها با افزایش ابعاد . به شدت افزایش می یابد. لذا برای پیدا کردن جواب های نزدیک بهینه . از الگوریتم ژنتیک مرتب سازی نامغلوب NSGA-II لگوریتم چند هدفه کلونی مورچگانMOACO استفاده شده است.
کلید واژگان: بارانداز متقاطع، زنجیره تامین سبز، الگوریتم ژنتیک مرتب سازی نامغلوب، الگوریتم چند هدفه کلونی مورچگانJournal of Industrial Engineering Research in Production Systems, Volume:7 Issue: 14, 2019, PP 59 -77Reducing fuel consumption leads to reduced greenhouse gas emissions and customer service costs, resulting in customer satisfaction and reduced environmental degradation.. For this purpose, this paper focuses on the optimization and planning of the movement of inbound and outbound trucks and the green supply chain, with multi cross-docking and two different types of objective functions of minimizing the sequence of truck transportation and carbon dioxide emissions into the supply chain. Since the paper model is a linear programming integer of zero and since these models belong to the NP-hard class, their solving time severely increases with increasing the problem dimensions. In this paper, to solve the model meta-heuristic algorithms have been used. The algorithms used in solving thae model areNon-dominated Sorting Genetic Algorithm-II (NSGA-II) and Multiple Objective Ant Colony (MOACO) Algorithm. Finally, the model has been solved using two algorithms and computational experiments reported carefully to illustrate and compare designing and computational.
Keywords: Cross docking, Green supply chain, Non-dominated Sorting Genetic Algorithm-II, Multiple Objective Ant Colony -
Journal of Artificial Intelligence in Electrical Engineering, Volume:7 Issue: 26, Summer 2018, PP 11 -22Ever-increasing energy demand has led to geographic expansion of transmission lines and their complexity. In addition, higher reliability is expected in the transmission systemsdue to their vital role in power systems. It is very difficult to realize this goal by conventional monitoring and control methods. Thus, phasor measurement units (PMUs) are used to measure system parameters. Although installation of PMUsincreases the observability and system reliability, high installation costs of these devices requireplacing them appropriately in proper positions. In this research, multi-objective placement of PMUs with the aims of improving investment and risk costs in power systems is performed along with observability constraint. Then, PMU placement problem is solved as an optimization problem using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Finally, the performance of the proposed method is tested on standard IEEE 24-bus test system and Roy Billiton IEEE 31-bus test system.Keywords: Non-dominated sorting genetic algorithm-II, Phasor measurement unit, Reliability, Roy Billiton IEEE 31-bus test system, standard IEEE 24-bus test system
-
Wide-area monitoring, protection, and control (WAMPAC) is a key factor in the implementation of smart transmission grids. WAMPAC has a crucial role in detection and prevention of widespread events with an ultimate goal of improving the electricity service reliability. Several mathematical techniques were proposed for the optimal phasor measurement units (PMU) placement (OPP) problem which represents the first step toward the development of WAMPAC. These techniques consider either the solution to the network observability or realization of specific PMU applications. This paper proposes a multi-objective framework for OPP which emphasizes the reliability of power systems. The objective functions minimize the investment cost and maximize the system reliability. Since the objectives are in conflict, the non-dominated sorting genetic algorithm II approach is adopted as an intelligent state sampling tool to find non-dominated solutions (Pareto front). The final placement scheme among Pareto points is chosen by a Fuzzy decision making approach.Keywords: multi-objective optimization, non-dominated sorting genetic algorithm II, phasor measurement unit, optimal PMU placement
-
International Journal of Supply and Operations Management, Volume:3 Issue: 3, Autumn 2016, PP 1429 -1441In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.Keywords: Supply Chain Management, Marketing Strategies, Hybrid Metaheuristic, Non-dominated sorting genetic algorithm-II, Particle swarm optimization, Variable neighborhood decomposition search
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.