به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

firefly algorithm

در نشریات گروه برق
تکرار جستجوی کلیدواژه firefly algorithm در نشریات گروه فنی و مهندسی
  • Mohamad Almas Prakasa, Mohamad Idam Fuadi, Muhammad Ruswandi Djalal, Imam Robandi*, Dimas Fajar Uman Putra

    The unbalanced load distribution in the electrical distribution network caused crucial power losses. This condition occurs in one of the electrical distribution networks, 20 kV Tarahan Substation, Province of Bandar Lampung, Indonesia. This condition can be maintained using optimal reconfiguration with the integration of Distributed Generation (DG) based on Renewable Energy (RE). This study demonstrates the optimal reconfiguration of the 20 kV Tarahan Substation with the integration of the Photovoltaic (PV) and Battery Energy Storage System (BESS). The reconfiguration process is optimized by using the Firefly Algorithm (FA). This process is conducted in the 24-hour simulation with various load profiles. The optimal reconfiguration is investigated in two scenarios based on without and with DG integration. The optimal configuration with more balanced load distribution conducted by FA reduces the power losses by up to 31.39% and 32.38% in without and with DG integration, respectively. Besides that, the DG integration improves the lowest voltage bus in the electrical distribution network from 0.95 p.u to 0.97 p.u.

    Keywords: Electrical Distribution Network, Firefly Algorithm, Optimal Reconfiguration, Renewable Energy
  • P. Kumar Mallick, A. Ranjan Panda, A. Kumar Parida *, M. Ranjan Panda, S. Rani Samanta
    The financial time series data is a highly nonlinear signal and hence difficult to predict precisely. The prediction accuracy can be improved by linearizing the signal. In this paper the nonlinear data sample is linearized by decomposing it into several IMFs. A hybrid multi-layer decomposition technique is developed. The decomposition proposed in this paper is the combination of both EMD and VMD methods. As a new contribution to the previous literature in this study the VMD is used to further decompose the higher frequency signals obtained from the EMD based decomposed signal. In the result analysis it is observed that the double decomposition improves the prediction accuracy. This is a new introduction in the field of stock market prediction. The prediction accuracy of the proposed model is performed by applying it to three different stock markets for predicting the closing price. Historical data (closing price) is implemented to obtain 1 day ahead predicted closing price. Comparative analysis of different previously implemented methods like BPNN, SVM, ANN and ELM, along with the proposed method is performed. GA is implemented for optimizing the kernel factors. It is observed that the proposed hybrid model outperformed the other methods.
    Keywords: Stock Market closing price, Variational Mode Decomposition, Empirical mode decomposition, Kernel Extreme Learning Machine, Firefly algorithm
  • H.R. Koosha *, Z. Ghorbani, R. Nikfetrat

    In the last decade, online shopping has played a vital role in customers' approach to purchasing different products, providing convenience to shop and many benefits for the economy. E-commerce is widely used for digital media products such as movies, images, and software. So, recommendation systems are of great importance, especially in today's hectic world, which search for content that would be interesting to an individual. In this research, a new two-steps recommender system is proposed based on demographic data and user ratings on the public MovieLens datasets. In the first step, clustering on the training dataset is performed based on demographic data, grouping customers in homogeneous clusters. The clustering includes a hybrid Firefly Algorithm (FA) and K-means approach. Due to the FA's ability to avoid trapping into local optima, which resolves K-means' main pitfall, the combination of these two techniques leads to much better performance. In the next step, for each cluster, two recommender systems are proposed based on K-Nearest Neighbor (KNN) and Naïve Bayesian Classification. The results are evaluated based on many internal and external measures like the Davies-Bouldin index, precision, accuracy, recall, and F-measure. The results showed the effectiveness of the K-means/FA/KNN compared with other extant models.

    Keywords: Recommender system, firefly algorithm, K-means, K-Nearest Neighbor, Naïve Bayesian
  • Tugce Demirdelen

    Power transformers play an important role in the transmission and distribution of electrical energy. Power transformers increase or decrease the voltage level without changing the power and frequency of alternating current (AC) electricity. Power transformers are divided into oil type and dry type transformers. Both two types have disadvantages of high cost and isolation problems etc. These problems are reduced by the optimization of transformer design parameters. In this study, the most optimal design dimension is determined by using the firefly algorithm, which is a new heuristic approach in calculating the volume of oil type power transformers at least time. At the same time, the performance comparison is made with the most preferred genetic algorithm, which is one of the other intuitive methods, and the advantages of the firefly algorithm are revealed. This work will provide both cost and time benefits for transformer manufacturers.

    Keywords: Firefly Algorithm, Genetic Algorithm, Power Transformer, Optimization
  • Fereidoon Rezaei, Mohammadali Afsharkazemi*, Mohammadali Keramati

     Detection of attacks and anomalies is one of the new challenges in promoting e-commerce technologies. Detecting anomalies of a network and the process of detecting destructive activities in e-commerce can be executed by analyzing the behavior of network traffic. Data mining systems/techniques are used extensively in intrusion detection systems (IDS) in order to detect anomalies. Reducing the size/dimensions of features plays an important role in intrusion detection since detecting anomalies, which are features of network traffic with high dimensions, is a time-consuming process. Choosing suitable and accurate features influences the speed of the proposed task/work analysis, resulting in an improved speed of detection. The present papers utilize a neural network for deep learning to detect e-commerce attacks and anomalies of e-commerce systems. Overfitting is a common event in multi-layer neural networks. In this paper, features are reduced by the firefly algorithm (FA) to avoid this effect. Simulation results illustrate that a neural network system performs with high accuracy using feature reduction. Ultimately, the neural network structure is optimized by using particle swarm optimization (PSO) to increase the accuracy of attack detection capability.

    Keywords: Firefly Algorithm, Attack Detection, Neural Network, PSO Algorithm
  • M. M. Dejam Shahabi, S. E. Beheshtian, S. P. Badiei, R. Akbari *, S. M. R. Moosavi
    To achieve high-quality software, different tasks such as testing should be performed. Testing is known as a complex and time-consuming task. Efficient test suite generation (TSG) methods are required to suggest the best data for test designers to obtain better coverage in terms of testing criteria. In recent years, researchers to generate test data in time-efficient ways have presented different types of methods. Evolutionary and swarm-based methods are among them. This work is aimed to study the applicability of swarm-based methods for efficient test data generation in EvoSuite. The Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Teaching Learning Based Optimization (TLBO), and Imperialist Competitive Algorithm (ICA) are used here. These methods are added to the EvoSuite. The methods are adapted to work in a discrete search space of test data generation problem. Also, a movement pattern is presented for generating new solutions. The performances of the presented methods are compared over 103 java classes with two built-in genetic-based methods in EvoSuite. The results show that swarm-based methods are successful in solving this problem and competitive results are obtained in comparison with the evolutionary methods.
    Keywords: Test data generation, Firefly Algorithm, particle swarm optimization, Teaching Learning Based Optimization, Imperialist Competitive Algorithm, EvoSuite
  • Reza Farhadi Koutenaei *, Amirali Nazari, Reza Keypour
    This paper presents a method which is capable of satisfying the optimal protection coordination of relays in Microgrids (MGs) in both islanded and grid-connected modes. While the tripping times are minimized, the requirement of having multiple setting groups for relays is alleviated. Non-linear constrained programming is formulated in firefly algorithm (FA) and static penalties are considered for constraints handling. The goal is to obtain the optimal coordination between the directional overcurrent relays (OCRs). The formulation includes a framework to satisfy coordination constraints for both connectivity modes of MG operation and yield the least tripping times, while maintaining an appropriate time interval between the primary and the backup relays. A 9-bus IEEE test system is simulated as the MG in DIgSILENT software and the achieved results are compared with a similar study where the genetic algorithm has been applied for optimization. The comparative results verify the capability of the current method and its superiority.
    Keywords: Microgrid, Firefly Algorithm, Distributed generation, Directional over current relays, Short circuit fault
  • Azam Amin, Mohsen Jahanshahi *, Mohammadreza Meybodi
    In Software Defined Network (SDN), controller plane is separated from the data plane simplifying management. In these networks, data forwarding cannot be conducted just one controller. Therefore, it is needed to use multiple controllers in control plane. Since, switch-controller propagation delays and inter-controller latencies affect the performance, the problem of determining appropriate number of controllers as well as their suitable locations are two main challenges, which are known as NP-Hard. In this paper, a new clustering method based on K-means, K-Harmonics means and firefly algorithm named CPP-KKF is proposed for controller placement in SDN. Result obtained by CPP- KKF algorithm is benefitted by the advantages of all techniques. The proposed algorithm is evaluated on four topologies of TopologyZoo with different scales, that include Aarnet, Colt, Cognet, and DFN and the conducted simulations demonstrate that the proposed solution outperforms K-means, K-means++, Firefly and GSO algorithms in terms of aforementioned performance issues.
    Keywords: Software Defined Network, Controller Placement Problem, K-harmonics Mean, K-means, Firefly Algorithm, Clustering Method
  • لادن ریاضی، علیرضا پورابراهیمی*، محمود البرزی، رضا رادفر

    در این مقاله روشی برای بهبود عملیات پنهان نگاری و بالا بردن امنیت، با استفاده از ترکیب الگوریتم های فراابتکاری ارایه شده است. هدف، دست یابی به مقدار بهبود یافته PSNR است؛ به گونه ای که کیفیت تصویر در فرایند پنهان نگاری حفظ شود. در این روش ابتدا هفت الگوریتم فراابتکاری متداول در این حوزه، از جمله بهینه سازی کلونی مورچه، زنبور عسل، جستجوی فاخته، ژنتیک، حرکت ذرات، تبرید شبیه سازی شده، کرم شب تاب انتخاب و کارایی الگوریتم های یادشده پس از اعمال به صورت انفرادی بر روی داده های موجود مورد ارزیابی قرار می گیرد. از میان الگوریتم های اعمال‎ شده، سه الگوریتم جستجوی فاخته، کرم شب تاب، زنبور عسل که دارای بهترین مقدار تابع برازش و در نتیجه بالاترین کیفیت هستند، انتخاب شدند. تمامی شش حالت مختلف از ترکیب این سه الگوریتم به طور مجزا بررسی شد. بهترین ترکیب به کار رفته به ترتیب، الگوریتم های کرم شب تاب، زنبور عسل و جستجوی فاخته است که این ترکیب، میانگین نسبت سیگنال به نوفه برابر 89/54 را فراهم کرده است. ترکیب یادشده در مقایسه با الگوریتم های انفرادی بررسی شده بهینه سازی کلونی مورچه، زنبور عسل، جستجوی فاخته، ژنتیک، حرکت ذرات، تبرید شبیه سازی شده، کرم شب تاب، به ترتیب به میزان 29/59، 61/29، 43/37 ، 56/52، 84/54، 82/57 و 82/3 درصد بهبود در مقدار PSNR را ارایه می کند.

    کلید واژگان: پنهان نگاری، الگوریتم های فرا ابتکاری، الگوریتم کرم شب تاب، الگوریتم زنبور عسل، الگوریتم جستجوی فاخته
    Ladan Riazi, Alireza Pourebrahimi*, Mahmood Alborzi, Reza Radfar

    This paper presents a method for improving steganography and enhancing the security using combinatorial Meta-heuristic algorithms. The goal is to achieve an improved PSNR value in order to preserve the image quality in the steganography process. Steganography algorithms, in order to insert message signal information inside the host data, create small changes based on the message signal in the host data, so that they are not visible to the human eye. Each cryptographic algorithm has two steps: insert a stego signal and extract it. You can use the area of the spatial or transformation area to insert the stego signal. Extraction can be done using the correlation with the original watermark or independently of it. Clearly, the choice of insertion method and how to extract are interdependent. In spatial techniques, information is stored directly in pixel color intensity but in the transform domain, the image is initially converted to another domain (such as frequency), and then the information is embedded in the conversion coefficients. Using optimization algorithms based on Metahuristic algorithms in this field is widely used and many researchers have been encouraged to use it. Using a suitable fitness function, these methods are useful in the design of steganography algorithms. In this research, seven commonly used Metahuristic algorithms, including ant colony, bee, cuckoo search, genetics, Particle Swarm Optimization, Simulated Annealing and firefly were selected and the performance of these algorithms is evaluated individually on existing data after being applied individually. Among the applied algorithms, cuckoo search, firefly and bee algorithms that have the best fitness function and therefore the highest quality were selected. All 6 different modes of combining these 3 algorithms were separately examined. The best combination is the firefly, bee and cuckoo search algorithms, which provides a mean signal-to-noise ratio of 54.89. The proposed combination compared to the individual algorithms of optimization of ant colony, bee, cuckoo search, genetics, Particle Swarm Optimization, Simulated Annealing and firefly, provides 59.29, 29.61, 37.43, 52.56, 54.84, 57.82, and 3.82% improvement in the PSNR value.

    Keywords: steganography, Metahuristic algorithms, firefly algorithm, bee algorithm, cuckoo search algorithms
  • غزال مردانیان، ندا بهزادفر*
    سرطان سینه یکی از شایع ترین سرطان ها در بین زنان است. در بسیاری از مواقع، هیچ علائم آشکاری در بیماران مبتلا به سرطان سینه مشاهده نمی شود. تشخیص دقیق سرطان سینه در مراحل اولیه برای کاهش مرگ و میر امری ضروری است. ماموگرافی به عنوان یک روش استاندارد بیش از 40 سال است که در تشخیص بیماری های سینه مورد استفاده قرار گرفته است. برای جلوگیری از تجزیه و تحلیل های ذهنی تصاویر ماموگرافی توسط رادیولوژیست ها و افزایش دقت آشکارسازی سرطان سینه، سیستم های مبتنی بر هوش مصنوعی در سال های اخیر مورد توجه زیادی قرار گرفته اند. در این مطالعه با ترکیب الگوریتم کرم شب تاب و اعمال پیش پردازش های مناسب بر روی تصویر به آشکارسازی سرطان سینه در تصاویر ماموگرافی پرداخته شده است. در این مطالعه، از تصاویر ماموگرافی موجود در مجموعه داده DDSM استفاده شد. 3 معیار عملکردی صحت، حساسیت و دقت (%4/93، 91%، 95%) برای تجزیه و تحلیل عملکرد تشخیص استفاده شد. اثر پیشنهادی در مقایسه با کارهای موجود در ادبیات عملکرد بهتری نشان می دهد
    کلید واژگان: الگوریتم کرم شب تاب، تصاویر ماموگرافی دیجیتال، سرطان سینه، مورفولوژی
    Ghazal Mardanian, Neda Behzadfar *
    Breast cancer is one of the most common cancers among women. Many times, no obvious symptoms were identified in breast cancer patients. Accurate detection of breast cancer at the earliest stage is very much essential to reduce mortality. Mammography has been used as a gold standard for over 40 years in diagnosing breast diseases. In recent years, artificial intelligence systems have been the focus of much attention in preventing the subjective analysis of mammograms and physicians by radiologists and enhancing the accuracy of breast cancer detection. In this study, combining the firefly algorithm and applying appropriate image processing to detect breast cancer in mammographic images has been investigated. In this paper, mammographic images in the DDSM dataset were used. Three performance metrics such as sensitivity, specificity and accuracy (93.4%, 91%, 95%) were used to analyze the detection performance. The proposed work shows better performance when compared to existing work in literature.
    Keywords: Firefly Algorithm, digital mammography images, breast cancer, Morphology
  • جواد سلیمی*، سلمان گلی بیدگلی

    در این مقاله، یک الگوریتم ترکیبی چندهدفه ارایه شده است که ویژگی های دو الگوریتم ژنتیک و کرم شب تاب را ترکیب می کند. این الگوریتم با مجموعه ای از کرم های شب تاب که در فضای مسئله به صورت تصادفی پخش می شوند، شروع به کار می کند و این ذرات طی مراحل تکامل، به جواب بهینه مسئله همگرا می شوند. سپس یک طرح جست وجوی محلی به عنوان روشی برای جست وجوی همسایگی به منظور بهبود کیفیت جواب ها ارایه و پیاده سازی شده است. این بخش از الگوریتم برای جست وجوی نواحی کم جمعیت، برای یافتن جواب های غالب استفاده می شود. برای بهبود الگوریتم تغییراتی در معیار تعیین بهترین بهینه سراسری به ازای هر کرم شب تاب و همچنین بهترین بهینه محلی اعمال شده است. استفاده از این روش موجب شده یکنواختی منحنی پرتو بیشتر شود. نتایج آزمایشگاهی روش ارایه شده بر روی برخی از توابع محک نشان می دهد که به کارگیری این روش موجب کاهش خطا شده است. الگوریتم پیشنهادی بر اساس یک الگوریتم پایه توسعه داده شده است.

    کلید واژگان: الگوریتم تکاملی کرم شب تاب چندهدفه، الگوریتم ژنتیک، جست وجوی محلی، بهینه سازی پیوسته
    Javad Salimisartaghti*

    In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching solution neighbors to improve the quality of global solutions. This part of the algorithm is used to search sparsely populated areas for finding the dominant solutions. To improve the algorithm, for each firefly some changes have been made on the criteria of determining the global optimal solution and doing local optimal solution; this leads to more uniformity of the Pareto curve and error reduction, as the experimental results show. The proposed algorithm is an extension of a basic algorithm.

    Keywords: Firefly algorithm, Genetics algorithm, Local search, multi-objective algorithm, Hybrid algorithm
  • ثریا عمویی، کمال میرزایی*
    چندی سازی برداری یکی از روش های پرکاربرد در فشرده سازی تصویر است. پژوهشگران، الگوریتم های مختلفی با چندی سازی برداری به منظور رسیدن به کتاب-کد بهینه ارائه داده اند. ازجمله این الگوریتم ها می توان از الگوریتم ژنتیک، الگوریتم بهینه سازی ازدحام ذرات و الگوریتم کرم شب تاب نام برد. در این مقاله برای چندی سازی برداری، روش جدیدی بر اساس الگوریتم کرم شب تاب بهبودیافته ارائه شده است. در روش پیشنهادی عملگر ترکیب ژنتیک با الگوریتم کرم شب تاب پایه، به منظور بهبود الگوریتم پایه، ادغام شده و از آن در تولید کتاب-کد چندی سازی برداری، استفاده گردیده است. نتایج پیاده سازی روش پیشنهادی، نشان می دهد که این الگوریتم کرم شب تاب بهبودیافته در مقایسه با الگوریتم های ژنتیک و کرم شب تاب پایه، بهتر عمل می کند. درصد بهبود کیفیت روش پیشنهادی نسبت به الگوریتم کرم شب تاب پایه حدود یک درصد است. علاوه بر آن، با افزایش سایز کتاب-کد عملکردی مشابه با الگوریتم بهینه سازی ازدحام ذرات دارد.
    کلید واژگان: فشرده سازی تصویر، چندی سازی برداری، الگوریتم ژنتیک، الگوریتم کرم شب تاب
    S. Amouei, K. Mirzaie *
    Vector Quantization (VQ) is the powerful technique in image compression. Generating a good codebook is an important part of VQ. There are various algorithms in order to generate an optimal codebook. Recently, Swarm Intelligence (SI) algorithms were adapted to obtain the near-global optimal codebook of VQ. In this paper, we proposed a new method based on a modified firefly algorithm (MFA) to construct the codebook of VQ. The proposed method merged genetic crossover operator with FA to develop the VQ. This method is called MFA model. Experimental results indicate that the reconstructed images generated by the proposed model is get higher quality than FA and it’s about one percent, but it is no significant superiority to the PSO algorithm. Furthermore, MFA is slower than FA.
    Keywords: Image Compression, Vector Quantization, Swarm Intelligence, Firefly Algorithm
  • Mehdi Rezaei, Mahmood Ghanbari *

    In this paper, a hybrid system based on wind turbines, solar arrays and fuel cells is designed optimally in the view of economical and technical aspects. The objective of the hybrid system optimization is to minimize the system net peresent cost(NPC) while considering the reliability as a constraint. The economical designing aspect is defined as equivalent loss factor (ELF) of reliability. The NPC consist of capital, operation and maintenance, replacement and, especially, loss of load costs. The data of load, solar radiation and definitive wind speed are from the North West of Iran. It is assumed that between the system components, i.e., wind turbine, photovoltaic array and inverter, there is a forced outage probability. The cuckoo optimization (COA) and firefly algorithms(FA) are applied to optimize the hybrid system components and the results are compared with the last studies. The results show that the COA method is superior to the FA and the last studies, with respect to the economical and technical aspects and convergence speed. They also show that complete consideration of the components availability and the availability of inverter increases the generation costs of the system, but improves the system reliability indices, too.

    Keywords: Solar, wind, fuel cell hybrid system, Equivalent loss factor, Net present cost, Cuckoo optimization ‎algorithm, Firefly Algorithm
  • مژده صباغ نژاد*، عمید خطیبی بردسیری
    امروزه تخمین تلاش توسعه نرم افزار در مدیریت پروژه های نرم افزاری امری حیاتی است. برآورد دقیق هزینه نه تنها به مشتریان و سرمایه گذاران کمک می کند، بلکه در تصمیم گیری منطقی حین انجام پروژه و مدیریت پروژه نرم افزاری نیز تاثیر گذار خواهد بود. تا کنون مدل های تخمین بی شماری ابداع و مورد استفاده قرار گرفته است. بسیاری از رویکردهای تخمین تلاش فعلی با جمع آوری داده ها از پروژه های قبلی انجام می شود. روش استدلال مبتنی بر رویداد یکی از تکنیک های موفق در زمینه تخمین تلاش پروژه های نرم افزاری است. این روش به تنهایی از دقت پایینی برخوردار است که این نقص را می توان با ایجاد مدل های ترکیبی بر طرف کرد. در این مقاله سعی شده است که با ترکیب مدل استنتاج مبتنی بر رویداد و دو الگوریتم فرا اکتشافی مستقل از جمله الگوریتم ازدحام ذرات و الگوریتم کرم شب تاب مدل ترکیبی جدیدی پیشنهاد و عملکرد مدل پیشنهادی را مورد ارزیابی قرار دهیم. با توجه به نتایج بدست آمده مدل پیشنهادی بر روی سه مجموعه داده کوکومو، آلبرشت و ماکسول، می توان گفت که الگوریتم کرم شب تاب عملکرد قابل قبولی داشته است.
    کلید واژگان: تخمین تلاش توسعه نرم افزار، مدل استدلال مبتنی بر رویداد، الگوریتم کرم شب تاب، الگوریتم ازدحام ذرات
    Mozhdeh Sabbagh Nezhad *, Amid Amid Khatibi Bardsiri
    Nowadays the effort estimation of software development is crucial in Software projects management. Not only have the accurate estimate of cost help customers and investors, but also it will be effective in rational decision-making in the implementation and management of software projects. Various estimation models have been invented and used so far. Many of the current effort estimation approaches are adopted by collecting data from previous projects. Case-based reasoning (CBR) is one of the successful techniques of effort estimation in software projects. This method alone is not very accurate, a defect which can be corrected by creating hybrid models. In this paper, CBR was combined with two separate metaheuristic algorithms including particle swarm optimization (PSO) and the firefly algorithm to propose a new hybrid model. Then the performance of the proposed model was evaluated. According to the results of the proposed model on Cocomo, Albrecht and Maxwell datasets, the firefly algorithm showed an acceptable performance.
    Keywords: Effort Estimation of Software Development, Case-Based Reasoning Model, Firefly Algorithm, Particle swarm optimization
  • A. Tahershamsi, A. Kaveh, R. Sheikholeslami, S. Kazemzadeh Azad
    In this study, a new hybrid method based on Firefly Algorithm (FA) and Harmony Search (HS) techniques, is presented for solving the least-cost design problem of water distribution systems (WDS). This algorithm is designed to improve the performance of the FA as a recently developed meta-heuristic that mimics the natural behaviour of fireflies. The use of such a nature–inspired optimization method to solve the optimal design problem of WDS needs particular modifications to produce high quality solutions. Therefore, a modification is proposed to the movement stage of artificial fireflies and based on the HS strategy a memory is utilized to save a number of the best solutions. Another improvement in this algorithm contains the addition of pitch adjustment operation in the FA as a mutation operator.The presented method is applied to optimal design of some well-known benchmark problems taken from literature, and the results confirm its validity. In addition, a sensitivity analysis is performed on the parameters of the algorithm.
    Keywords: Meta, heuristics, Firefly algorithm, Harmony search, Optimum design, Water distribution systems
  • R. Subramanian *, A. Prakash, K. Thanushkodi
    The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to limits on generator true power output and transmission losses. The MFA is a stochastic, Meta heuristic approach based on the idealized behaviour of the flashing characteristics of fireflies. This paper presents an application of MFA to ELD for six generator test case system. MFA is applied to ELD problem and compared its solution quality and computation efficiency to Genetic algorithm (GA), Differential Evolution (DE), Particle swarm optimization (PSO), Artificial Bee Colony optimization (ABC), Biogeography-Based Optimization (BBO), Bacterial Foraging optimization (BFO), Firefly Algorithm (FA) techniques. The simulation result shows that the proposed algorithm outperforms previous optimization methods.
    Keywords: Artificial Bee Colony optimization, Bio geography, Based Optimization, Economic Load Dispatch, Firefly Algorithm, Genetic algorithm, Particle swarm optimization
  • A. Baghlani, M.H. Makiabadi, H. Rahnema
    An accelerated firefly algorithm (AFA) for fast size optimization of truss structures is proposed in this paper. Metaheuristic firefly algorithm has been recently developed and its effectiveness in solving practical problems such as sizing optimization of truss structures has not been thoroughly explored. The numerical experiments show that although the standard firefly algorithm (FA) is a powerful approach for truss optimization, it suffers from slow rate of convergence, and hence it should be modified to solve real-life problems. The proposed AFA imposes some improvements on the searching procedure by both reduction of randomness and scaling the random term in fireflies'' motion. The effectiveness and robustness of the algorithm are investigated by solving some benchmark problems. The results revealed that the proposed AFA remarkably enhances the rate of convergence and stability of standard firefly algorithm.
    Keywords: Firefly algorithm, truss structures, size optimization, metaheuristics
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال