به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

image processing

در نشریات گروه برق
تکرار جستجوی کلیدواژه image processing در نشریات گروه فنی و مهندسی
  • محمد موسوی، سوده حسینی*، محمدرضا امیدی

    در این مقاله یک سیستم تشخیص خودکار موارد مبتلا به کوید-19 مبتنی بر اینترنت اشیا پیشنهاد می شود. در مدل پیشنهادی ابتدا با استفاده از فن آوری اینترنت اشیا تصاویر پزشکی مستقیم پس از مراجعه فرد مشکوک از طریق تجهیزات پزشکی مجهز به اینترنت اشیا به مخزن داده ارسال می شود. سپس به منظور کمک به متخصصین رادیولوژی برای تفسیر هرچه بهتر تصاویر پزشکی از چهار مدل شبکه عصبی پیچشی از پیش آموزش دیده به نام های InceptionResNetV2، InceptionV3، VGG19 و ResNet152 و دو مجموعه داده تصاویر پزشکی رایولوژی قفسه سینه و CT Scan در یک طبقه بندی سه کلاسه برای پیش بینی دقیق موارد مبتلا به کوید-19، افراد سالم و موارد مبتلا بیماری استفاده می شود. درنهایت بهترین نتیجه به دست آمده برای تصاویر CT Scan متعلق به معماری InceptionResNetV2 با دقت 99.366% و برای تصاویر رادیولوژی مربوط به معماری InceptionV3 با دقت 96.943% می باشد. نتایج نشان می دهد این سیستم منجر به کاهش مراجعه روزانه به مراکز درمانی و در نتیجه کاهش فشار بر سیستم مراقبت های درمانی می شود. همچنین به متخصصین رایولوژی و کادر درمان کمک می کند تا هرچه سریعتر بیماری شناسایی شود.

    کلید واژگان: پردازش تصویر، هوش مصنوعی، اینترنت اشیا، شبکه عصبی پیچشی، یادگیری عمیق
    Mohammad Mousavi, Soodeh Hosseini *, Mohammadreza Omidi

    In this paper, we propose an automatic detection system for COVID-19 cases based on the Internet of Things. In the proposed model, first, using Internet of Things technology, medical images are sent directly to the data collection after the suspicious person's visit through medical equipment equipped with Internet of Things, and then, in order to help radiologists to interpret medical images better, usage has been made of four pre-trained convolutional neural network models i.e. InceptionV3, InceptionResNetV2, VGG19 and ResNet152 as well as two datasets of chest radiology medical images and CT Scan in a 3-class classification for accurate prediction of cases suffering from COVID-19, healthy people, and diseased cases. Finally, the best result for CT-Scan images is related to InceptionResNetV2 architecture with an accuracy of 99.366%, and for radiology images related to the InceptionV3 architecture, it is 96.943%. The results show that this system leads to a reduction in daily visits to medical centers and thus reduces the pressure on the medical care system. It also helps rheology specialists to identify the disease as quickly as possible.

    Keywords: Image Processing, Artificial Intelligence, Internet Of Things, Convolutional Neural Network, Deep Learning
  • دانیال حق پرست، علی محمد فتوحی*

    یکی از عوامل تاثیرگذار در سوانح رانندگی، خستگی و خواب آلودگی راننده است. در این مقاله با استفاده از تشخیص چهره و حالت چشم راننده مبتنی بر پردازش تصویر و هوش مصنوعی، خواب آلودگی راننده تشخیص و اعلام خطر صوتی مناسب به منظور بیدارکردن راننده صادر می شود. روش پیشنهادی بر روی گوشی تلفن همراه راننده و تنها با استفاده از امکانات گوشی شامل پردازنده، دوربین و اعلام خطر صوتی اجرا شده است و نیاز به سخت افزار اضافه در خودرو ندارد. در الگوریتم پیشنهادی به منظور تشخیص چهره از روش سریع و کارای هار-کسکید استفاده شده است. به منظور تسریع بیشتر الگوریتم، در این مقاله با ترکیب دو مرحله تشخیص چشم و تشخیص حالت چشم، از روش هار-کسکید برای تشخیص چشم باز در ناحیه چهره استفاده شده است. الگوریتم پیشنهادی، برخلاف الگوریتم های متعدد و پیشرفته موجود، از جمله الگوریتم های مبتنی بر یادگیری عمیق، ضمن دارابودن دقت لازم، هزینه محاسباتی پایینی دارد و می توان آن را بلادرنگ بر روی انواع تلفن های همراه هوشمند پیاده سازی کرد. برای آموزش و افزایش دقت عملکرد الگوریتم پیشنهادی، پایگاه داده ای از پانصد تصویر مناسب در وضعیت های مختلف رانندگی تهیه شده و به کار رفته است. بررسی نتایج تجربی بر روی بیست ویدئوی آزمایشی، که در شرایط مختلف واقعی رانندگی و بدون استفاده از شبیه ساز تهیه شده است، نشان دهنده عملکرد مناسب سیستم طراحی شده با ایجاد 95٪ از هشدارهای مورد انتظار است.

    کلید واژگان: خستگی و خواب آلودگی راننده، پردازش تصویر، هوش مصنوعی، تشخیص چهره و چشم، برنامه تلفن همراه
    Daniyal Haghparast, Alimohammad Fotouhi*

    One of the important factors in traffic accidents is the fatigue and drowsiness of the driver. In this paper, by using the driver's face detection and eye state recognition based on image processing and artificial intelligence, the driver's drowsiness is detected, and appropriate alarms sound to wake up the driver. The proposed method is implemented on the driver's mobile phone and uses the facilities of the phone, including processor, camera, and alarm, so it requires no additional hardware in the car. The method used and implemented in order to detect and determine the position of the face is based on the Hare-Cascade algorithm. In order to further speed up the algorithm by combining the two stages of eye detection and eye state detection, the Hare-Cascade method has been used to detect open eyes in the face area. The proposed algorithm, while providing the necessary accuracy, unlike the existing numerous and advanced algorithms, including algorithms based on deep learning, has a low computational cost and can be implemented in real time on different types of smart mobile phones. Also, by adjusting the sensitivity of the software by the user, based on the detection of one or two open eyes in the area of the face and the time between two consecutive frames of not detecting open eyes, increasing the number of correct alarms and reducing the number of false alarms can be controlled.  In this research to train and increase the accuracy of the intelligent model used, a database of 500 suitable images in different driving situations was prepared and used. Experimental results on 20 test videos in different driving situations show the proper performance of the designed system by creating 95% of the expected alarms. Based on the results of numerous and various experimental tests with the acceptable performance of the product of this applied research in detecting driver drowsiness and creating correct alarms, it seems that if used by drivers, it can prevent many car accidents.

    Keywords: Driver Fatigue, Drowsiness, Image Processing, Artificial Intelligence, Face, Eye Detection, Mobile Phone Application
  • Masoumeh Jafari *

    Identifying retinal blood vessels is widely used for diagnosing eye diseases such as diabetic retinopathy, and glaucoma. Currently, doctors manually extract these vessels, which is a challenging and time-consuming process that often leads to errors. In this paper, a new method is proposed for retinal blood vessel extraction, which includes three basic parts. First, the noise in the image is removed. Next, the center lines of the vessel are extracted. Finally, the blood vessels of the retinal images are extracted using the area expansion and noise removal method. The proposed method is applied to the images of the DRIVE test set and its efficiency is evaluated using four different metrics: sensitivity, specificity, accuracy, and precision. The average results for accuracy, specificity, sensitivity, and accuracy in the proposed method are 0.92896, 0.98965, 0.91756, and 0.96578, respectively.

    Keywords: Image Processing, Retina Images, Blood Vessels, Retinal Vessels Extraction, Noise Removal, Retina Disturbance
  • Elahe Yadolahi, Sheis Abolmaali *

    Semantic segmentation is a critical task in computer vision, focused on extracting and analyzing detailed visual information. Traditional artificial neural networks (ANNs) have made significant strides in this area, but spiking neural networks (SNNs) are gaining attention for their energy efficiency and biologically inspired time-based processing. However, existing SNN-based methods for semantic segmentation face challenges in achieving high accuracy due to limitations such as quantization errors and suboptimal membrane potential distribution. This research introduces a novel spiking approach based on Spiking-DeepLab, incorporating a Regularized Membrane Potential Loss (RMP-Loss) to address these challenges. Built upon the DeepLabv3 architecture, the proposed model leverages RMP-Loss to enhance segmentation accuracy by optimizing the membrane potential distribution in SNNs. By optimizing the storage of membrane potentials, where values are stored only at the final time step, the model significantly reduces memory usage and processing time. This enhancement not only improves the computational efficiency but also boosts the accuracy of semantic segmentation, enabling more accurate temporal analysis of network behavior. The proposed model also demonstrates better robustness against noise, maintaining its accuracy under varying levels of Gaussian noise, which is common in real-world scenarios. The proposed approach demonstrates competitive performance on standard datasets, showcasing its potential for energy-efficient image processing applications.

    Keywords: Supervised Learning, Image Processing, Semantic Segmentation, Spiking Neural Networks, RMP-Loss
  • Meraj Rajaee *, Mina Jalali
    The identification and diagnosis of plant diseases have long been considered. This research presents a system for diagnosing the volume and type of apple diseases and the spoilage percentage of rotten apples. To estimate the volume of apples, the method of immersion in water to change the volume of the container was used, ensuring more accurate volume estimation. For disease detection and spoilage analysis, a chamber with constant lighting conditions and a halogen lamp was used. Four images were taken with a camera for better analysis. The volume of apples was calculated through two approximations of the cylinder and incomplete cone. The average error rate in this system was 5%. Also, in the present research, a novel method for feature selection was identified using a combination of the weight feature and the calculated volume of hollow apples. To calculate the percentage of failure of each apple, first, the type of failure was identified. Then, the ratio of loss of each apple relative to the whole apple was calculated and compared with the number obtained from the desired region method, which was accurate. In this study, three major diseases of apples were studied, and an algorithm was written to distinguish these three types of infections from healthy apples. The results showed that the proposed method had the necessary efficiency to calculate the volume and percentage of failure and diagnose the type of apple diseases. In addition, the system's accuracy compared to previous studies increased by up to 95%.
    Keywords: Apple Volume, Image Processing, Raspberry Pi 3, Opencv, Python
  • مهدی احمدنیا، مجتبی مغربی*، رضا قنبری

    به طورمعمول جزئیات صحنه هدف در تصاویر ضبط شده در محیط های کم نور به خوبی قابل تشخیص نیستند. این مشکل می تواند عملکرد بسیاری از الگوریتم های دید رایانه را کاهش دهد؛ به همین دلیل در این مقاله روشی جدید ارائه می شود تا با افزایش میزان روشنایی، جزئیات پنهان شده را دراین تصاویر نمایان سازد. در روش پیشنهادی ابتدا نقشه روشنایی اولیه تصویر محاسبه، سپس با استفاده از یک مدل ریاضی جدید نقشه روشنایی اولیه بهبود داده می شود. مشتق پذیربودن تابع هدف مدل پیشنهادی وجه تمایز آن با سایر مدل های مشابه است. درکل روش های کلاسیک بهینه سازی مانند روش های نیوتن، گرادیان و ناحیه اعتماد نیازمند مشتق پذیری تابع هدف اند؛ بنابراین برای حل مدل پیشنهادی می توان از روش های متنوع تری در مقایسه باسایر مدل های مشابه استفاده کرد. خطی بودن قیدها و محدب بودن مدل پیشنهادی از دیگر ویژگی های مثبت این مدل است. نتایج بررسی ها نشان می دهد که روش پیشنهادی عملکرد خوبی در روشن کردن تصاویر تاریک و همچنین نمایان ساختن جزئیات صحنه هدف دارد و از این منظر قابل رقابت با بسیاری از روش های مطرح بهبود تصاویر تاریک است.

    کلید واژگان: افزایش روشنایی، بهبود تصاویر تاریک، نقشه روشنایی، نظریه ریتاینکس، مدل بهینه سازی، پردازش تصویر
    Mahdi Ahmadnia, Mojtaba Maghrebi*, Reza Ghanbari

    Low-light images often suffer from low brightness and contrast, which makes some scene details hard to see. This can affect the performance of many computer vision tasks, such as object recognition, tracking, scene understanding, and occlusion detection. Therefore, it is important and useful to enhance low-light images. One technique to enhance low-light images is based on the Retinex theory, which decomposes images into two components: reflection and illumination. Several mathematical models have been recently developed to estimate the illumination map using this theory. These methods first compute an initial illumination map and then refine it by solving a mathematical model. This paper introduces a novel method based on the Retinex theory to estimate the illumination map. The proposed method employs a new mathematical model with a differentiable objective function, unlike other similar models. This allows us to use more diverse methods to solve the proposed model, as classical optimization methods such as Newton, Gradient, and Trust-Region methods need the objective function to be differentiable. The proposed model also has linear constraints and is convex, which are desirable properties for optimization. We use the CPLEX solver to solve the proposed model, as it performs well and exploits the features of the model. Finally, we improve the illumination map obtained from the mathematical model using a simple linear transformation. This paper introduces a new method based on the Retinex theory for enhancing low-light images. The proposed method improves the illumination and the visibility of the scene details. We compare the performance of our method with six existing methods AMSR, NPE, SRIE, DONG, MF, and LIME. We use four common metrics to evaluate the visual quality of the enhanced images: AMBE, LOE, SSIM, and NIQE. The results demonstrate that our method is competitive with many of the state-of-the-art methods for low-light image enhancement.

    Keywords: Enhance Illumination, Enhance Low-Light Images, Illumination Map, Retinex Theory, Optimization Model, Image Processing
  • Eisa Zarepour*, Mohammadreza Mohammadi, Morteza Zakeri-Nasrabadi, Sara Aein, Razieh Sangsari, Leila Taheri, Mojtaba Akbari, Ali Zabihallahpour

    Using mobile phones for medical applications are proliferating due to high-quality embedded sensors. Jaundice, a yellow discoloration of the skin caused by excess bilirubin, is a prevalent physiological problem in newborns. While moderate amounts of bilirubin are safe in healthy newborns, extreme levels are fatal and cause devastating and irreversible brain damage. Accurate tests to measure jaundice require a blood draw or dedicated clinical devices facing difficulty where clinical technology is unavailable. This paper presents a smartphone-based screening tool to detect neonatal hyperbilirubinemia caused by the high bilirubin production rate. A machine learning regression model is trained on a pretty large dataset of images, including 446 samples, taken from newborns' sternum skin in four medical centers in Iran. The learned model is then used to estimate the level of bilirubin. Experimental results show a mean absolute error of 1.807 mg/dl and a correlation of 0.701 between predicted bilirubin by the proposed method and the TSB values as ground truth.

    Keywords: Health Sensing, Image Processing, Internet Of Things, Machine Learning, Neonatal Jaundice
  • Seyed Alireza Bashiri Mosavi *, Omid Khalaf Beigi, Arash Mahjoubifard

    Using intelligent approaches in diagnosing the COVID-19 disease based on machine learning algorithms (MLAs), as a joint work, has attracted the attention of pattern recognition and medicine experts. Before applying MLAs to the data extracted from infectious diseases, techniques such as RAT and RT-qPCR were used by data mining engineers to diagnose the contagious disease, whose weaknesses include the lack of test kits, the placement of the specialist and the patient pointed at a place and low accuracy. This study introduces a three-stage learning framework including a feature extractor by visual geometry group 16 (VGG16) model to solve the problems caused by the lack of samples, a three-channel convolution layer, and a classifier based on a three-layer neural network. The results showed that the Covid VGG16 (CoVGG16) has an accuracy of 96.37% and 100%, precision of 96.52% and 100%, and recall of 96.30% and 100% for COVID-19 prediction on the test sets of the two datasets (one type of CT-scan-based images and one type of X-ray-oriented ones gathered from Kaggle repositories).

    Keywords: COVID-19 Prediction, Convolutional Neural Network, Transfer Learning, Computer Vision, Image Processing
  • Sh. Kamlesh Shah, R. Mishra *
    One of the most common procedures implemented in the diagnosis of cancer and tumour is percutaneous biopsy under computed tomography (CT) image guidance. A 9-DOF hybrid redundant fully actuated robotic manipulator with a novel arc and train design is developed here for the retrieval of suspected tissue for biopsy procedure under CT guidance. Mathematical model, forward, inverse kinematics and joint trajectory equations of the robotic manipulator is formulated using standard DH convention. Inverse kinematics of the novel arc and train structure for CT bed mountability is also derived in this research. 3D-CAD model of the robot is developed and compared with the CT machine and a human model in SolidWorks 2016. Theoretical simulation is performed using the derived equations in MATLAB. Target for the simulation and experimentation is obtained from CT image with the help of an expert radiologist in KIMS hospital, Bhubaneswar. Five experiments is performed using the target point to understand the repeatability of the robotic manipulator. Deviation analysis of the robot in reaching the target during experimentation is obtained and plotted using a dual camera setup and internal position sensors of the actuator. The experimental results were well within acceptable parameters under laboratory conditions.
    Keywords: 9-DOF Redundant Robotic Manipulator, Theoretical Simulation, Experimental Validation, Deviation Analysis, Image Processing, CT Image Guidance
  • Mounes Astani, Mohammad Hasheminejad *, Mahsa Vaghefi

    The appropriateness of the agricultural economy is very effective in sustainable food security. The appearance and shape of agricultural products change in different periods. The correct classification of the product in terms of quality after harvest affects the economy of farmers. Today, deep learning classifiers have greatly contributed to the correct classification of product quality. But the database challenges and the same conditions of the database in the training and testing phase affect the classification accuracy. The purpose of this article is to classify the quality of tomatoes in the challenging conditions of the database, including crowded backgrounds, noise in the image, leaves of the same color as the fruit in the image, and the similarity of growth stages. For this purpose, 3 databases with different challenges have been used in the stage of classification training and testing. In this article, the aim is to classify the quality of tomatoes into 3 classes ripe, unripe ,and semi-ripe using Efficientnet deep learning classifier. According to the conditions of the database, the first three processes of noise removal, image contrast improvement ,and image segmentation have been applied to the images. The results of the evaluation of the proposed method show the proper performance of EfficientnetB5.

    Keywords: image processing, deep learning, Sustainable Food Security, Tomato quality classification, Efficientnet Deep Learning Model
  • Omid Ghahraei, Majid Kheshtzarrin, Ali Saghafinia *

    Among the agricultural products, mushroom is one of the best candidates for robotic harvesting methods. One of the main problems of mushroom growers is a critical need for labor within the specified time for harvesting mushrooms, so mushroom growing is labor intensive. In this research, we attempted to develop and apply a harvesting robot for this crop to reduce the problems that growers face in terms of harvesting labor. For ease of end-effector movement between shelves, the robot was developed by Cartesian Mechanism. This robot used image processing and a computer expert system to detect the position of mushrooms on the substrate on the shelf. The end-effector acts by using a suction cup and a non-shear mechanism to harvest mushrooms from the substrate. By testing this robot on the substrate, we could harvest perfect whole mushrooms on average of 81.5% of mushrooms on the prepared substrates. Harvesting time per mushroom was obtained 12.45s, which is the amount of respective time of 8.45s more than harvesting time by labor hands, but in robotic harvesting, robots unlike humans can work 24 hours a day, continuously during growing time. An expert system also could be a valuable asset to change the grower’s strategy in terms of harvested mushrooms size and quality based on customer needs in the market.

    Keywords: Mushroom harvesting, Robot, Image Processing, Expert System, Shelf Cultivation Method
  • Farima Fakouri, Mohsen Nikpour *, Abbas Soleymani Amiri

    Due to the increased mortality caused by brain tumors, accurate and fast diagnosis of brain tumors is necessary to implement the treatment of this disease. In this research, brain tumor classification performed using a network based on ResNet architecture in MRI images. MRI images that available in the cancer image archive database included 159 patients. First, two filters called median and Gaussian filters were used to improve the quality of the images. An edge detection operator is also used to identify the edges of the image. Second, the proposed network was first trained with the original images of the database, then with Gaussian filtered and Median filtered images. Finally, accuracy, specificity and sensitivity criteria have been used to evaluate the results. Proposed method in this study was lead to 87.21%, 90.35% and 93.86% accuracy for original, Gaussian filtered and Median filtered images. Also, the sensitivity and specificity was calculated 82.3% and 84.3% for the original images, respectively. Sensitivity for Gaussian and Median filtered images was calculated 90.8% and 91.57%, respectively and specificity was calculated 93.01% and 93.36%, respectively. As a conclusion, image processing approaches in preprocessing stage should be investigated to improve the performance of deep learning networks.

    Keywords: deep learning, Image Processing, Automatic Detection, Brain Tumor, MRI
  • نرجس حاجی زاده، حامد وحدت نژاد*، رمضان هاونگی

    امروزه با پیشرفت فناوری ها در حوزه کمک به افراد نابینا، سیستم های جهت یابی از اهمیت بسیاری برخوردار هستند. همچنین با پیشرفت تکنولوژی در حوزه محاسبات ابری و تلفن همراه می توان به این افراد کمک کرد. در این تحقیق یک معماری با استفاده از محاسبات ابری موبایل به منظور کمک به این افراد، در هنگام عبور از تقاطع پیشنهاد می شود. معماری پیشنهادی شامل سه مولفه تلفن همراه، ابر و  نظارت است. اطلاعات مکان و زمان، جمع آوری و در پایگاه داده ابر ذخیره می شود تا در مواقع نیاز، آشنایان فرد نابینا بتوانند بر او نظارت داشته باشند. برای تشخیص وضعیت چراغ عابر پیاده عکس از تقاطع ها با استفاده از دوربین گرفته می شود. با استفاده از ویژگی رنگ و عملیات ریخت شناسی، رنگ چراغ عابر پیاده تشخیص داده و به فرد نابینا گزارش داده می شود. نتایج حاصل از پیاده سازی روی تصاویر گرفته شده، کارایی خوب روش پیشنهادی در تشخیص وضعیت چراغ عابر پیاده را نشان می دهد که دارای میانگین دقت 100٪  برای روز و همچنین شب است.

    کلید واژگان: محاسبات ابری موبایل، چراغ عابر پیاده، پردازش تصویر، عملیات ریخت شناسی
    Narjes Hajizadeh, Hamed Vahdat-Nejad*, Ramazan Havangi

    Subject: 

    Today, with the advancement of technologies to assist blind and visually impaired people, navigation systems are of great importance. As a result of emerging technologies in telecommunication and smartphones, these people can be helped. Identifying pedestrian and traffic lights is important to help pedestrians with visual impairments cross the intersection safely and securely. Background- researchers have studied the detection and identification of traffic lights in the assistive system or blind assist device. These researches can be divided into three main types: based on pattern matching, based on circular shape extraction, and based on color distribution.

    Methodology

    In this research, an architecture based on mobile cloud computing is proposed, which can help blind pedestrians in crossing intersections. The architecture consists of three tiers: mobile phone, cloud, and supervision. The most important component is located on the mobile phone. It recognizes the color of pedestrian light by using image processing techniques. Spatial information (time and location) of the blind person is collected and held in a cloud storage database so that acquaintances can monitor him if needed. In order to detect the status of pedestrian lights, pictures of crossing streets with cameras will be captured. Using the features of color and morphology operations, the color of pedestrian lights is recognized and reported to the blind person. To this end, morphological operations are performed to eliminate small elements in the background and to restore the original size of the traffic light sign. Therefore, the operations of dilation, filling, and erosion are used.

    Result

    We gathered a dataset including 280 photos of pedestrian lights (170 photos at day, 110 photos at night) in different illumination conditions (early day, noon, early night, night) and weather (sunny, cloudy, rainy). Matlab software and notebook system with Intel (R) Core (TM) i5 CPU and AMD Mobility Radeon HD 5100 graphics card were used to implement pedestrian traffic-light status detection. The scenario-based method is used to evaluate the system architecture and show that the proposed system can satisfy the investigated scenario. At last, the implementation results on taken images show excellent performance in detecting pedestrian lights with approximately 100% accuracy for the day and night.

    Keywords: Mobile cloud computing, Pedestrian light, Image processing, Morphology operations
  • I. Topaloglu *
    A deep learning-based convolutional artificial neural networks structured a new image classification method approach was implemented in the study. Sample application was carried out with Diabetic Retinopathy disease. Obtaining information about the blood vessels and any abnormal patterns from the rest of the phonoscopic image and assessing the degree of retinopathy is the problem itself. To solve this problem developed methodology and algorithmic structure of this new approach is presented in the study. An approach called care model was used in this study different from the classical CNN structure. The care approach is based on the idea that the best solution will be taken from the new data obtained by rescale the available data according to total number of pixels before the average data pool is created and then CNN processes will continue. In the care model approach, all data is multiplied by the number of elements by the number of epoch time eight tensors. The purposed care model include VGG19 image classification model and developed mathematical model presented. Pre-trained model and all image dataset taken from kaggle and keras for implementation of case study. The purposed model provide train accuracy 87%, test accuracy 88%, precision 93% and recall 83%.
    Keywords: Deep Learning, neural networks, python, Image processing, eye disease, care model
  • صادق کلانتری*، سید محسن رضوی، هادی مرادی، عماد حمیدی

    یکسان بودن اندازه گام های مارپیچ در یک لامپ موج رونده با بازدهی سیستم رابطه مستقیم دارد. در این مقاله هدف ساخت دستگاهی است که با بکارگیری پردازش تصویر گام های مارپیچ را به صورت اتوماتیک و با دقت مناسب اندازه گیری نماید. به همین منظور الگوریتم پیشنهادی همراه با نو آوری هایی در زمینه های رفع نویز و تعیین آستانه در جهت اندازه گیری اتوماتیک گام های مارپیچ ارایه گردید و نمونه اولیه دستگاه ساخته شد. این دستگاه قابلیت کار در دو مد اندازه گیری دستی و اتوماتیک را داراست و مشابه داخلی نداشته و از نظر قیمت تمام شده و کاربرد در اندازه گیری گام های مارپیچ نسبت به نمونه خارجی بسیار کم هزینه تر می باشد. این دستگاه در مد اتوماتیک قادر است کلیه گام های مارپیچ را به یکباره اندازه گیری نماید. در صورتی که در دستگاه مشابه خارجی گام ها باید به صورت دستی و جداگانه اندازه گیری گردند. انتخاب نقاط ابتدا و انتهای گام ها در این دستگاه به صورت تطبیقی انجام می شود که سبب افزایش سرعت اندازه گیری و افزایش تکرارپذیری در اندازه گیری گام ها می گردد. در صورتی که در دستگاه نمونه خارجی انتخاب نقاط شروع و پایان گام ها توسط کاربر انجام می شود که خود تکرارپذیری اندازه گیری را کاهش می دهد. نتایج بدست آمده نشان می دهد که دقت اندازه گیری دستگاه ساخته شده در مقایسه با دستگاه نمونه خارجی قابل قبول می باشد.

    کلید واژگان: اندازه گیری گام های مارپیچ، دستگاه اندازه گیری گام مارپیچ، پردازش تصویر، پردازش سیگنال
    Sadegh Kalantari*, Seyed Mohsen Razavi, Hadi Moradi, Emad Hamidi

    The same size of the helix steps in a traveling wave tube has a direct relationship with the efficiency of the system. In this article, the goal is to build a device that measures helix steps automatically and with proper accuracy by using image processing. For this purpose, the proposed algorithm was presented along with innovations in the fields of noise removal and threshold determination for the automatic measurement of helix steps, and the prototype of the device was made. This device has the ability to work in two modes of manual and automatic measurement, and it has no domestic equivalent, and it is much cheaper in terms of cost and use in measuring helix steps than the sample made abroad. In automatic mode, this device is able to measure all helix steps at once. In the case of a similar sample made abroad the steps must be measured manually and separately. The selection of the beginning and end points of steps in this device is done adaptively, which increases the speed of measurement and increases the repeatability in measuring steps. In the sample made abroad, the selection of the start and end points of the steps is done by the user, which reduces the repeatability of the measurement. The obtained results show that the measurement accuracy of the manufactured device is acceptable compared to the sample made abroad.

    Keywords: Helix steps measurement, Helix steps measuring device, Image Processing, Signal Processing
  • Ahmad Moghadam, Mohammad Adeli *
    Accurate working length measurement plays a key role in the success of root canal treatment. In this paper, a novel system is proposed for predicting root canals working length from dental radiographs. The system uses image processing techniques to detect a tooth midline and estimate its length in pixels. The estimated length is then used to predict the working length (in mm) by a weighted linear regression model. The system’s performance was evaluated using a database of single- and double-rooted teeth. The mean working length prediction error was 7.3% for single-rooted teeth, and 6.7% and 5.6% for the mesio-buccal and the distal canals of double-rooted teeth, respectively. The system was also successfully used to predict the working length of double-rooted teeth’s mesio-lingual canal, which is invisible in the radiographs. The mean prediction error was 6.9% in this case. The accuracy of these working length predictions indicates that the proposed solution could potentially be used to develop practically efficient working length measurement tools that can overcome some problems of the traditional radiographical measurements such as time-consuming repeated measurements and subjective manual adjustments
    Keywords: working length prediction, root canal, dental radiographs, image processing, weighted linear re-gression
  • سجاد دهقان، محمدجواد فدائی اسلام*
    تشخیص شی برجسته با هدف شناسایی و بخش بندی برجسته ترین و متمایزترین اشیاء یا نواحی در یک تصویر انجام می شود. شبکه های کاملا کانولوشنی (FCN)، مزایای خود را در مساله تشخیص شی برجسته نشان داده اند، با این حال، بسیاری از کارهای قبلی بر دقت ناحیه برجسته تمرکز کرده اند اما به کیفیت مرز توجهی ندارند. در این پژوهش، ما بر مکمل بودن بین اطلاعات لبه و اطلاعات شی برجسته تمرکز می کنیم و یک ماژول تشخیص لبه را برای مدل سازی صریح اطلاعات لبه برای حفظ مرزهای شیء برجسته به شبکه پیشنهادی اضافه می کنیم. شبکه پیشنهادی ما سعی دارد این دو وظیفه مکمل را با کمک متقابل هم بهبود دهد. از طرف دیگر حضور اشیاء چند مقیاسی در مجموعه داده های تشخیص شی برجسته نیاز به مدل سازی دقیق در سطح تابع هزینه برای مقابله با مشکل عدم تعادل بین پیش زمینه و پس زمینه در تصاویر دارد. از این رو، ما از تابع هزینه ترکیبی در مرحله آموزش استفاده می کنیم که به مقیاس اشیاء حساس نیست، و می تواند مساله انسجام فضایی را بهتر مدیریت کند و به طور یکنواخت مناطق برجسته را بدون پارامترهای اضافی برجسته کند. مقایسه نتایج کمی، کیفی به دست آمده توسط روش پیشنهادی با سایر روش های پیشرفته در شش مجموعه داده پرکابرد تشخیص برجستگی، نشان می دهد، روش پیشنهادی از عمل کرد خوبی برخوردار است و به سرعت می تواند مناطق برجسته را شناسایی کند. به طور خاص، روش ما بهترین عملکرد را در سه مجموعه داده آزمایشی پرکابرد از نظر معیارهای F-measure و MAE دریافت می کند که کارایی روش پیشنهادی را نشان می دهد.
    کلید واژگان: تشخیص شئ برجسته، تشخیص لبه، تابع هزینه ترکیبی، شبکه کاملا کانولوشنی، یادگیری عمیق، پردازش تصویر
    Sajjad Dehghan, Mohammad Javad Fadaeieslam *
    Detection of salient objects is done with the aim of identifying and segmenting prominent objects or areas in an image. Fully Convolutional Networks (FCNs) have shown their advantages in salient object detection; however, many previous works have focused on the accuracy of the prominent area without paying attention to its edge. This paper focuses on the complementarity between edge information and salient object one and added an edge recognition module to explicitly model edge information to maintain salient object boundaries. Our proposed network is trying to improve these two tasks simultaneously. The presence of objects with different scales in related datasets is another problem in this area. It requires an appropriate cost function to deal with the imbalance problem between background and foreground in images. So, we have used the hybrid cost function in the training phase, which is not sensitive to the scale of objects and can better manage the problem of spatial coherence and uniformly highlight salient areas without additional parameters. A Comparison of the quantitative and qualitative results obtained by the proposed method with other advanced methods in six widely used protrusion detection datasets shows that the proposed method has a good performance and can quickly identify prominent areas. In particular, according to the quantitative results, our method gets the best result on three widely used test datasets in terms of F-measure and MAE criteria, demonstrating the proposed method's efficiency.
    Keywords: Salient object detection, Edge detection, Hybrid loss function, Fully convolutional network, Deep learning, Image processing
  • مسلم سردشتی بیرجندی، حسین رحمانی*، سعید فراهت

    فاضلابروها جزء اصلی تاسیسات زیربنایی شبکه فاضلاب شهری به حساب می آیند. آسیب های فاضلابروها به دلیل غیرقابل رویت بودن کمتر توجه شده و این عدم رسیدگی به آسیب ها، موجب وضعیت های اضطراری و هزینه های غیر منطقی می گردد. این شریان های حیاتی در طول سرویس دهی، نیازمند نگهداری و بازسازی جهت عملکرد بهینه در تمام ابعاد می باشند. امروزه روش های پردازش و طبقه بندی عکس و فیلم-های گرفته شده توسط ربات های ویدیو متری متحرک برای انجام بازرسی شبکه فاضلاب بسیار مورد استفاده قرار می گیرند. یکی از الگوریتم های موفق در زمینه پردازش تصویر، الگوریتم شبکه عصبی کانولوشن است که از زیر مجموعه های الگوریتم یادگیری عمیق به شمار می رود. در این مقاله از یک الگوریتم شبکه عصبی کانولوشن جهت طبقه بندی تصاویر آسیب های شبکه فاضلاب و موارد موثر در بهبود و دقت و عملکرد این الگوریتم، پرداخته شده است. تصاویر توسط ربات ویدیومتری از شبکه فاضلاب بدست آمده است. نتایج حاصل از استفاده از الگوریتم پیشنهادی در شبکه فاضلاب، دستیابی به دقت 98 درصدی در طبقه بندی آسیب های شبکه و در مقایسه با سایر روش ها و نیز کاهش زمان اجرای نسبتا کم معماری پیشنهادی (91 دقیقه) در مقایسه با سایر معماری های معتبر در یادگیری عمیق در یک بستر سخت افزاری یکسان می باشد. همچنین، در آینده، الگوریتم پیشنهادی جهت تحلیل شبکه های فاضلاب بدون نیاز به نیروهای متخصص و همچنین کنترل یک ربات هدایت خودکار ویدیومتری شبکه فاضلاب مورد استفاده قرار خواهد گرفت.

    کلید واژگان: الگوریتم یادگیری عمیق، شبکه عصبی کانولوشن، ویدئومتری شبکه فاضلاب، پردازش تصویر
    Moslem Sardashti Birjandi, Said Farahat

    Sewage flow path is the main component of urban sewerage network infrastructure. Damage to sewers is less noticeable due to invisibility, and this failure to handle the damage leads to emergencies and unreasonable costs. These vital arteries need to be maintained and rebuilt during service for optimal performance in all dimensions. Nowadays, the methods of processing and classifying photos and videos taken by mobile videometer robots are widely used to inspect the sewer network. One of the successful algorithms in the field of image processing is the convolutional neural network algorithm, which is a subset of deep learning algorithm. In this paper, a convolutional neural network algorithm is used to classify images of sewer network damage and cases affecting the improvement, accuracy and performance of this algorithm. The images were obtained by a videometric robot from the sewer network. Results of using the proposed algorithm in the sewerage network, achieving 98% accuracy in classifying network faults and compared to other methods and also reducing the relatively low execution time of the proposed architecture (91 minutes) compared to other architectures valid ones are the same in deep learning on the same hardware platform. Also, in the future, the proposed algorithm will be used to analyze networks without the need for specialized personnel and also to control an automatic network videometry robot.

    Keywords: Deep learning algorithm, Convolution neural network, Sewer network videometry, Image Processing
  • Khosro Rezaee, MohammadKhalil Nakhl Ahmadi, Maryam Saberi Anari

    Segmentation is a fundamental element in Medical Image Processing (MIP) and has been extensively researched and developed to aid in clinical interpretation and utilization. This article discusses a method for segmenting abnormal masses or tumors in medical images that is both robust and effective. We suggested a method b ased on Active Contour (AC) and modified Level - set techniques to detect malignancies in Magnetic Resonance Imaging (MRI), mammography, and Computed Tomography (CT). To segment malignant masses, the active contour approach, the energy function, the level - se t method, and the proposed F function are employed. The system was evaluated using 160 medical images from two databases, including 80 mammograms and 80 MRI brain scans. The algorithm for segmenting suspicious segments has an accuracy, recall, and precisio n of 96.25%, 95.60%, and 95.71%, respectively. By adding this technique into tissue imaging devices, the accuracy of diagnosing images with a relatively large volume that are evaluated fast is increased. Cost savings, time savings, and high precision are a ll advantages of the approach that set it apart from similar systems.

    Keywords: Image Processing, Medical Image, Highboost, Active Contour, Levelset, F-Energy
  • محمدصادق کیهان پناه، بهروز کوهستانی*

    مقابله با آتش‌سوزی جنگل‌ها برای جلوگیری از خطرات بالقوه آنها و همچنین حفاظت از منابع طبیعی به عنوان یک چالش در میان محققان مطرح است. هدف از این تحقیق، تشخیص ویژگی‌های آتش و دود از تصاویر بصری پهپاد برای دسته‌بندی، تشخیص شیء و قطعه‌بندی تصاویر است. از آنجا که جنگل‌ها محیط‌های بسیار پیچیده و غیر ساختاری هستند، استفاده از سیستم بینایی همچنان با مشکلاتی نظیر شباهت ویژگی‌های شعله با نور خورشید، گیاهان و حیوانات و یا پوشش شعله با دود مواجه است که باعث هشدارهای اشتباه می‌شوند. روش پیشنهادی در این تحقیق، استفاده از شبکه‌های عصبی کانولوشنی از روش‌های یادگیری عمیق است که به صورت خودکار، توانایی استخراج یا تولید ویژگی در لایه‌های مختلف خود را دارند. ابتدا به جمع‌آوری داده و افزایش آنها با توجه به روش‌های داده‌افزایی پرداخته شده و در ادامه، استفاده از یک شبکه 12 لایه برای دسته‌بندی و همچنین روش یادگیری انتقالی برای قطعه‌بندی تصاویر پیشنهاد می‌شود. نتایج به دست آمده نشان می‌دهند که روش داده‌افزایی به کار برده شده با توجه به تغییر اندازه و آماده‌سازی تصاویر ورودی به شبکه از کاهش شدید ویژگی‌های موجود در تصاویر اولیه جلوگیری کرده و همچنین شبکه‌های عصبی کانولوشنی مورد استفاده می‌توانند به خوبی ویژگی‌های آتش و دود موجود در تصاویر را استخراج کنند و نهایتا به تشخیص و محلی‌سازی آنها بپردازند.

    کلید واژگان: آتش سوزی جنگل، پردازش تصویر، شبکه عصبی کانولوشنی، یادگیری عمیق
    Mohammad Sadegh Kayhanpanah, Behrooz Koohestani *

    Fighting forest fires to avoid their potential dangers as well as protect natural resources is a challenge for researchers. The goal of this research is to identify the features of fire and smoke from the unmanned aerial vehicle (UAV) visual images for classification, object detection, and image segmentation. Because forests are highly complex and nonstructured environments, the use of the vision system is still having problems such as the analogues of flame characteristics to sunlight, plants, and animals, or the smoke blocking the images of the fire, which causes false alarms. The proposed method in this research is the use of convolutional neural networks (CNNs) as a deep learning method that can automatically extract or generate features in different layers. First, we collect data and increase them according to data augmentation methods, and then, the use of a 12-layer network for classification as well as transfer learning method for segmentation of images is proposed. The results show that the data augmentation method used due to resizing and processing the input images to the network to prevent the drastic reduction of the features in the original images and also the CNNs used can extract the fire and smoke features in the images well and finally detect and localize them.

    Keywords: forest fire, unmanned aerial vehicles, image processing, deep learning, convolutional neural networks
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال