به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

genetic algorithm (ga)

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه genetic algorithm (ga) در نشریات گروه فنی و مهندسی
  • راضیه سیرانی، محسن ترابیان*، محمدحسن بهزادی، اصغر سیف

    در این مقاله، طراحی آماری- اقتصادی نمودار کنترل بیزی مبتنی بر توزیع پیشگو برای مشاهدات انفرادی از توزیع مشخصه ی کیفی نمایی ارایه شده است. در انجام این کار، دو نوع توزیع پیشین مزدوج و توزیع جفریز در نظر گرفته شده و بر اساس توزیع مشاهدات در فاز اول، توزیع پیشگو تعیین شده است. سپس با استفاده از مدل اقتصادی لورنزن و وانس، یک طرح آماری- اقتصادی برای داده ها به دست آمده است. پارامترهای طراحی بهینه (فاصله ی نمونه گیری، اندازه ی نمونه و حدود کنترل) با استفاده از الگوریتم ژنتیک تعیین شده و تجزیه و تحلیل حساسیت برای مقادیر مختلف پارامترهای مدل انجام گرفته است. نتایج این رویکرد با نتایج مدل کلاسیک مقایسه شده است. بر اساس نتایج، این روش نسبت به روش کلاسیک موثرتر است

    کلید واژگان: نمودار کنترل بیزی، توزیع پیشین، توزیع پیشگو، طراحی آماری- اقتصادی، الگوریتم ژنتیک
    Razieh Seirani, Mohsen Torabian *, Mohammad Hassan Behzad, Asghar Seif

    In this article with title "Economic-statistical design of Bayesian control chart based on the predictive distribution for individual observations with an exponential qualitative characteristic distribution" the economic-statistical design of the Bayesian control chart based on the predictive distribution for individual observations of the exponential qualitative characteristic distribution is presented. In doing this, two types of the conjugate prior distribution and Jeffrey’s distribution are considered, and based on the distribution of observations in phase I, the predictive distribution is determined. Then, using the economic model of Lorenzen and Vance, an economic-statistical design was obtained for the data. Optimal design parameters (sampling distance, sample size, and control limits) were determined using a genetic algorithm and sensitivity analysis was performed for different values of model parameters. The results of this approach have been compared with the results of the classical model. The results show that this method is more effective than the classical method

    Keywords: Bayesian control chart, prior distribution, predictive distribution, economic-statistical design (ESD), Genetic algorithm (GA)
  • Mohammad Hossein Sattarkhan *
    A multi-product system is one of the different types of manufacturing systems, in which a large number of products are produced that complement each other and have interdependence. These types of systems have recently been widely used in various industries. In some types of multi-product manufacturing industries that offer their products as a package, the scheduling of the production of components of each package affects the time it takes to complete the package. Therefore, a new problem has been defined that the primary purpose of its production scheduling, in addition to reducing the completion time of the products, is to make various items forming a package, get ready over a short interval of time and be supplied to the sales unit so that the package can be delivered to the final consumer. The purpose of this paper is to express the problem of production scheduling of multi-product production systems in the form of linear programming. For this purpose, two mathematical models are presented, and their functions are compared. Besides, an efficient genetic algorithm is proposed to solve the problem, which is able to solve the problem in a reasonable time, with acceptable accuracy.
    Keywords: Parallel Lines Production Scheduling, Operations Sequence, Mixed-integer linear programming (MILP), Genetic algorithm (GA)
  • Ali Sanagooy Aghdam, Mohammad Ali Afshar Kazemi *, Abbas Toloie Eshlaghy

    Optimized asset tracking with Radio Frequency Identification (RFID) as a complicated innovation that requires much money to be implemented has become more popular in the healthcare industry. Considering the use of more antennas in each reader, we present a modern heuristic methods, hybrid of Genetic Algorithms (GA) and Simulated Annealing (SA) for the purpose of placing readers in an emergency department of a hospital with an RFID network. In this study, a multi-objective function is developed for the network coverage maximization and the minimization of total cost, tag reader collision, interference, energy consumption, and path loss in a simultaneous way. The proposed algorithm provides savings (on average) in the total cost of the RFID network through the efficient use of three types of readers with one, two and four antenna ports. Additionally, by testing three scenarios, the effect of algorithms in achieving the optimal solution is indicated by the simulated results.  Besides, the results of GA-SA is compared to the results of GA and other existing models in the relevant literature. It is shown that its main advantage is the use of multi-antenna RFID readers, which reduces the total cost of the RFID network and also increase network coverage with fewer readers and antennas. In other words, contributions for the research are proposing a hybrid GA-SA algorithm, developing a multi-objective function, testing the algorithm in a hospital setting, and comparing the results of GA-SA with GA.

    Keywords: Genetic algorithm (GA), Simulated annealing (SA), Asset tracking, Multi-antenna readers, Hospital
  • Mostafa Bakhtiari, Sadoullah Ebrahimnejad *, Mina Yavari-Moghaddam
    In this study, a robust optimization model is introduced, we propose a location-routing problem with simultaneous pickup and delivery under a hard time window that has a heterogeneous and limited depot and vehicle capacities and multi-variety of products and uncertain traveling time that considering all of these constraints together make the problem closer to real practical world’s problems, that not been studied in previous papers. For this purpose, a mixed-integer linear programming (MILP) model is proposed for locating depots and scheduling vehicle routing with multiple depots. Then, the robust counterpart of the proposed MILP model is proposed. The results show that the GA performs much better than the exact algorithm concerning time. GAMS software fails to solve the large-size problem, and the time to find a solution grows exponentially with increasing the size of the problem. However, the GA quite efficient for problems of large sizes, and can nearly find the optimal solution in a much shorter amount of time. Also, results in the Robust model show that increasing the confidence level has led to an increase in the value of the objective function of the robust counterpart model, this increase does not exhibit linear behavior. At 80% confidence level, the minimum changes in the objective function are observed, if we want to obtain a 90% confidence level, it requires more cost, but increasing the confidence level from 70% to 80% does not need more cost, so an 80% confidence level can be considered as an ideal solution for decision-makers.
    Keywords: Supply Chain, Location-Routing Problem (LRP), Simultaneous pickup, delivery, Time window, Genetic Algorithm (GA), Robust Optimization (RO) Approach
  • Muhammad Umair Akhtar, Muhammad Huzaifa Raza, Muhammad Shafiq *

    Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality. At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’ orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several factors including arrival rate, variability, and batch size, to name a few. Among those, batch size is a significant construct for effective scheduling of an FMS, as it directly affects completion time. On the other hand, constant batch size makes MTO less responsive to customers’ demands. In this paper, an FMS scheduling problem with n jobs and m machines is studied to minimize lateness in meeting due dates, with focus on the impact of batch size. The effect of batch size on completion time of the orders is investigated under following strategies: (1) constant batch size, (2) minimum part set, and (3) optimal batch size. A mathematical model is developed to optimize batch size considering completion time, lateness penalties and setup times. Scheduling of an FMS is not only a combinatorial optimization problem but also NP-hard problem. Suitable solutions of such problems through exact methods are difficult. Hence, a meta-heuristic Genetic algorithm is used to optimize scheduling of the FMS.

    Keywords: (Flexible manufacturing system (FMS), Scheduling optimization, Batch size, due dates, Completion time, Genetic algorithm (GA
  • مصطفی ستاک، سهیل جلیلی بوالحسنی، حسین کریمی، بهارک قربانی
    در این مقاله، مسئله مسیریابی وسیله نقلیه چندانباری، با در نظرگرفتن مسیر بین انبارها بررسی می شود که در آن وسایل نقلیه می توانند در دپوهای میانی، بارگیری مجدد انجام دهند. وسایل نقلیه با بار کامل، از دپوی مبدا شروع به حرکت می کنند و مشتریان را تا پایان بار سرویس می دهند. آنها سپس می توانند برای بارگیری مجدد به دپوی میانی عزیمت کنند و سرانجام برای اتمام مسیر خود به دپوی مبدا باز گردند. برای این مسئله، یک مدل ریاضی برنامه ریزی عدد صحیح مختلط معرفی می شود. هدف مسئله، یافتن مسیر برای وسایل نقلیه به گونه ای است که بدون نقض کردن محدودیت ظرفیت وسایل نقلیه، هزینه کل سفر و هزینه بارگیری های مجدد در دپوهای میانی کمینه شود. مسئله حاضر توسط حل کننده سیپلکس در نرم افزار گمز 23.5 و رویکردهای الگوریتم ژنتیک و جستجوی ممنوع حل می شود. نتایج محاسباتی به دست آمده، کارآیی الگوریتم های پیشنهادشده را از نظر زمان حل و کیفیت جواب نشان می دهند.
    کلید واژگان: مسئله مسیریابی وسیله نقلیه چندانباری، مسیر بین انبارها، دپوی میانی، بارگیری مجدد، الگوریتم ژنتیک، جستجوی ممنوع
    M. Setak, S. Jalili Bolhassani, H. Karimi, B. Ghorbani
    In this paper، we study the multi-depot vehicle routing problem with inter-depot routes، in which the vehicles can replenish at intermediate depots. Vehicles leave the origin depot with load on-board and serve customers until out of load. They may visit an intermediate depot to replenish and finally return to the origin depot، completing their route. We initiate a mathematical mixed integer programming model for this problem. The objective of the problem is to find routes for vehicles at a minimal cost in terms of total travel cost and replenishments cost at intermediate depots، without violating the capacity constraints of the vehicles. The solution to the problem is obtained through CPLEX solver in commercial software GAMS 23. 5، Genetic Algorithm and Tabu Search algorithms. Computational results indicate the effectiveness of the proposed algorithms in terms of solution time and quality of results.
    Keywords: Multi, depot vehicle routing problem, Inter, depot route, Intermediate depot, Replenishment, Genetic Algorithm (GA), Tabu Search (TS)
  • Sahar Khoshfetrat, Farhad Hosseinzadeh Lotfi
    As ranking is one of the most important issues in data envelopment analysis (DEA), many researchers have comprehensive studies on the subject and presented different approaches. In some papers, DEA and Analytic hierarchy process (AHP) are integrated to rank the alternatives. AHP utilizes pairwise comparisons between criteria and units, assessed subjectively by the decision maker, to rank the units. In this paper, a nonlinear programming (NLP) model is introduced to derive the true weights for pairwise comparison matrices in AHP. Genetic algorithm (GA) is used in order to solve this model. We use MATLAB software to solve proposed model for ranking the alternatives in AHP. A numerical example is applied to illustrate the proposed model.
    Keywords: data envelopment analysis (DEA), Analytic Hierarchy Process (AHP), Genetic Algorithm (GA)
  • Adel A. A. Elgammal, Adel M. Sharaf
    This paper presents a novel Electric Vehicle (EV) coordinated control scheme for Fuel Cell Plug-in Hybrid Electric Vehicle (FC-PHEV) based on Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) self adjusting algorithms. The proposed EV drive system comprised a FC, Ni-MH battery as secondary DC energy source, and the induction motor. The use of PSO/GA soft computing search and optimization algorithms ensures optimized online control settings. The AC drive utilized the simple hysteresis current controller with PSO/GA optimal slip driven by the reference speed and current signals. The main features of the control scheme are to track speed reference trajectory with minimum over-current, enhanced energy utilization, EV-drive loss reduction and dynamic drive response for parameters variation and stabilization of the common DC-link bus voltage. The integrated DC-AC drive-scheme is fully stabilized using a novel FACTS Green Plug Filter Compensator (GPFC) scheme that ensures stabilized dc bus voltage, minimal inrush current and DC-bus transient conditions. Simulation and experimental results indicate that the strategy can ensure the stabilization of the DC-common bus and the efficient utilization of the FC-Battery DC sources.
    Keywords: Fuel Cell, Interleaved, Boost Chopper, Green Power Filter Compensator, Induction Motor Drives, Electric Vehicles, Dynamic Gains tuning Particle Swarm Optimization PSO, Genetic Algorithm GA
  • Adel A. A. El, Gammal, Adel M. Sharaf
    The growth in environmental concerns, and the rapid increase on the electric power demand, increased the interest in renewable energy. Wind energy source has the ability to provide electric power in rural or isolated areas. The variation of output power with the variation of wind speed can cause significant power quality issues, especially in the case of a standalone generation system. The paper presents a number of novel self adjusting wind energy utilization schemes using the modified single phase operation of the three phase induction generator supplemented by novel voltage stabilization switched filter compensation scheme. The family of series-parallel switched capacitor filter schemes is controlled by a dynamic Particle Swarm Optimization PSO and Genetic Algorithm GA search techniques error driven self adjusting controller to ensure voltage stabilization, minimum impact of the electric load excursions and wind variations on terminal voltage. A prototype of the GP-EM-EE device has been built and tested in the laboratory. Some selected experimental results are provided for the validation of the system. Based on extensive simulation results using MATLAB/SIMULINK and the prototype laboratory scheme, it has been established that the performance of the controllers both in transient as well as in steady state is quite satisfactory and it can also stabilize the network voltage. The proposed switched smart filter using Green Plug/Energy Management/Energy Economizer GPEM- EE devices for small single phase induction motors can be used in residential motor drives for water pumping, ventilation, air conditioning, compressors, refrigeration applications.
    Keywords: Green Plug, Genetic Algorithm GA, Particle Swarm Optimization PSO, Switched, Modulated Power Filters, Wind Energy Conversion Scheme
  • سید محمد سیدحسینی*، روح الله حیدری، طاهره حیدری
    طراحی شبکه های اتوبوس رانی، یک مساله مهم در حمل و نقل عمومی است. یکی از گام های مهم در این راستا، محاسبه ی تعداد و مکان های بهینه ی پایانه های مورد نیاز است. در واقع این مساله به عنوان حالت خاصی از مساله مکان یابی تسهیلات، که یک مساله ی بهینه سازی ترکیبیاتی با مقیاس بزرگ است، نیاز به زمان زیادی برای حل دارد.تا کنون برای حل این مساله، از روش های شاخه و کران، شمارش ضمنی و گرم و سرد کردن شبیه سازی شده استفاده شده است. هر چند روش سوم که یک روش فرا ابتکاری است بسیار کاراتر از دو روش دیگر است؛ اما زمان اجرای الگوریتم، برای شهرهای بزرگ هنوز هم طولانی است. در این مقاله، برای حل مساله یک الگوریتم ژنتیک پیشنهاد شده است. مهمترین مزیت الگوریتم ژنتیک پیشنهادی، رسیدن به جواب دقیق تر در زمان کمتر می باشد. نتایج مشاهده شده، نشان داد که متدولوژی پیشنهادی یک الگوریتم کارا و مطمئن برای این مساله است. برای تایید این مطلب، الگوریتم برای شبکه های اتوبوسرانی مشهد و تهران اجرا و نتایج آن با نتایج کوشش های پیشین مقایسه شده است.
    کلید واژگان: شبکه ی اتوبوس رانی، مساله ی مکان یابی، الگوریتم ژنتیک، برنامه ریزی عدد صحیح مختلط
    S.M. Seyed, Hosseini *, R. Heydari, T. Heydari
    Bus network design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. Branch & bound and simulated annealing methods have already been used for solving Urban Bus Terminal Location Problem(UBTLP) that first method requires much time and second method doesn’t reach desired solution. In this paper, a Genetic Algorithm is suggested for solving the problem. The main advantages of proposed algorithm are reaching better solution and taking less time. The demonstrated results have shown that proposed Genetic Algorithm can be an efficient and confident approach for solving UBTLP. For verification of proposed methodology, two illustrative practical examples are solved and obtained outcomes are reported.
    Keywords: Bus Networks, Location Problem, Genetic Algorithm (GA), Mixed Integer Programming (MIP)
نمایش نتایج بیشتر...
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال