heuristic algorithm
در نشریات گروه صنایع-
Journal of Advances in Industrial Engineering, Volume:58 Issue: 1, Winter and Spring 2024, PP 125 -158
Nurses’ scheduling problems have attracted a significant amount of healthcare research, indicating the importance of these issues. In this paper, it has tried to present a multi-objective model for the assignment of nurses and anesthesiologists to surgical teams, considering frequency and fairness in allocating time to staff members. Since idle time is inevitable, we seek to divide idle time equally among staff. In addition, the break time of each staff member have an almost regular frequency during the shift. Minimizing overtime costs and maximizing attention to the willingness of surgical staff members to work overtime are other objectives of the problem. Three metaheuristic algorithms NSGA-II, MOPSO, and SPEA-II used to solve the presented model. A hybrid multi-objective genetic algorithm based on variable neighborhood search is also presented. The comparison of the solutions of 4 algorithms shows that the proposed hybrid algorithm has a significant superiority compared to other algorithms in terms of the average value of the solution, the quality of the Pareto solution set, and execution time. The presented model is compared with the real data of the surgical department of elective patients of a government hospital in Qazvin province. The obtained results show that the presented model has significantly created equality in the amount of working time of nurses and anesthesiologists in the elective surgery department. It has also spread the idle time of each staff member during the work shift, which has caused different time breaks for each one.
Keywords: Break Time Frequency, Fuzzy Time Duration, Heuristic Algorithm, Idle Time Fairness, Nurse Scheduling -
Due to the many applications of the travelling salesman problem, solving this problem has been considered by many researchers. One of the subsets of the travelling salesman problem is the metric travelling salesman problem in which a triangular inequality is observed. This is a crucial problem in combinatorial optimization as it is used as a standard problem as a basis for proving complexity or providing solutions to other problems in this class. The solution is used usually in logistics, manufacturing and other areas for cost minimization. Since this is an NP-hard problem, heuristic and meta-heuristic algorithms seek near-optimal solutions in polynomial time as numerical solutions. For this purpose, in this paper, a heuristic algorithm based on the minimum spanning tree is presented to solve this problem. Then, by generating 20 instances, the efficiency of the proposed algorithm was compared with one of the most famous algorithms for solving the travelling salesman problem, namely the nearest neighbour algorithm and the ant colony optimization algorithm. The results show that the proposed algorithm has good convergence to the optimal solution. In general, the proposed algorithm has a balance between runtime and the solution found compared to the other two algorithms. So the nearest neighbour algorithm has a very good runtime to reach the solution but did not have the necessary convergence to the optimal solution, and vice versa, the ant colony algorithm converges very well to the optimal solution, but, its runtime solution is very longer than the proposed algorithm.
Keywords: Travelling salesman problem, Metric travelling salesman problem, Heuristic algorithm, Minimum spanning tree -
هدف
ایجاد ساختار و گسترش زنجیره های تامین حلقه بسته پایدار برای برآوردن استانداردهای زیست محیطی، اقتصادی و اجتماعی در جهت تقویت موقعیت در بازارهای رقابتی بسیار حیاتی است. این مطالعه به منظور تصمیم گیری در سطوح عملیاتی و تاکتیکی برای پیکربندی شبکه زنجیره تامین حلقه بسته پایدار با هدف حداکثرسازی ارزش خالص فعلی و به دنبال حداقل سازی میزان انتشار کربن با حفظ سیاست های سازگار با محیط زیست و در نظر گرفتن تورم انجام شده است.
روش شناسی پژوهش:
این مقاله رویکرد بهینه سازی فازی استوار برای مقابله با عدم قطعیت های موجود در زنجیره تامین حلقه بسته پایدار را در نظر می گیرد. هم چنین به دلیل پیچیدگی مدل و چندهدفه بودن آن از یک روش جدید ترکیبی الگوریتم اکتشافی و برنامه ریزی آرمانی چندگزینه ای با تابع مطلوبیت استفاده می شود. مدل برنامه ریزی خطی عدد صحیح مختلط پیشنهادی در صنعت الکترونیک اعمال می شود.
یافته هامدل پیشنهادی در چندین آزمایش ارزیابی شده و در سناریوهای مختلف مورد بحث قرار می گیرد تا کارایی و اعتبار مدل و روش پیشنهادی تایید شود. نتایج با دو عامل شکاف بهینه و زمان حل مقایسه شد که عملکرد مناسب روش پیشنهادی را نشان داد. سپس، نتایج تاکتیکی و استراتژی مدل برای مطالعه موردی ارایه شد که در آن جریان بهینه بین تسهیلات، انتخاب تامین کنندگان مناسب، انتخاب نوع حمل ونقل و افتتاح تسهیلات ارایه شد. یافته ها نشان داد که در سناریوهای مختلف بهبود موثر راه حل های به دست آمده با کاهش زمان حل تا %20 می تواند برای مشکلات در مقیاس بزرگ پاسخگو باشد.
اصالت/ارزش افزوده علمی:
این مقاله با در نظر گرفتن یک روش ترکیبی جدید الگوریتم اکتشافی و برنامه ریزی آرمانی چندگزینه ای با تابع مطلوبیت برای حل مشکل طراحی شبکه زنجیره تامین حلقه بسته پایدار تحت عدم قطعیت طراحی می شود.
کلید واژگان: ارزش خالص فعلی، الگوریتم اکتشافی، بهینه سازی فازی استوار، برنامه ریزی آرمانی چندگزینه ای با تابع مطلوبیت، زنجیره تامین حلقه بسته پایدارPurposeEstablishing the structure and expansion of sustainable closed-loop supply chains is critical to meeting environmental, economic, and social standards to strengthen their position in competitive markets. This study aims to decide on operational and tactical levels to configure the Stable Closed Chain Supply Chain Network (SCLSC) to maximize Net Present Value (NPV) and seek to minimize carbon emissions while maintaining environmentally friendly policies and considering inflation.
MethodologyThis paper considers a solid Fuzzy Robust Optimization (FRO) approach to deal with stable, closed-loop supply chain uncertainties. Also, due to the complexity of the model and its multi-objective, a new combined method of Heuristic algorithm (HA) and Multi-Choice Goal Programming with Utility Function (MCGP-UF) is used. The proposed Mixed Integer Linear Programming (MILP) model is applied in the electronics industry.
FindingsThe proposed model is evaluated in several experiments and discussed in different scenarios to confirm the efficiency and validity of the proposed model and method. The results were compared with the two factors of optimal gap and solution time, which showed the proper performance of the proposed method. Then, the tactical results and model strategy were presented for a case study in which the optimal flow between facilities, selection of suitable suppliers, selection of transportation type, and opening of facilities were presented. The findings showed that in different scenarios, the effective improvement of the obtained solutions by reducing the solution time by twenty percent could address large-scale problems.
Originality/Value:
By considering a new combined method of heuristic algorithm and multi-choice ideal programming with a utility function, this paper is done to solve the problem of designing a stable closed-loop supply chain network under uncertainty.
Keywords: Fuzzy robust optimization, Net Present Value, Multi-choice goal programming with utility function, Sustainable Closed-loop Supply Chain, Heuristic Algorithm -
This paper considers a customer order scheduling (COS) problem in which each customer requests a variety of products processed in a two-machine flow shop. A sequence-independent attached setup for each machine is needed before processing each product lot. We assume that customer orders are satisfied by the job-based processing approach in which the same products from different customer orders form a product lot (job). Each customer order for a product is processed as a sublot (a batch of identical items) of the product lot by applying the lot streaming (LS) idea in scheduling. We assume that all sublots of the same product must be processed together by the same machine without intermingling the sublots of other products. The completion time of a customer order is the completion time of the product processed as the last product in that order. All products in a customer order are delivered in a single shipment to the customer when the processing of all the products in that customer order is completed. We aim to find an optimal schedule with a product lots sequence and the sequence of the sublots in each job to minimize the sum of completion times of the customer orders. We have developed a mixed-integer linear programming (MILP) model and a multi-phase heuristic algorithm for solving the problem. The results of our computational experiments show that our model can solve the small-sized problem instances optimally. However, our heuristic algorithm finds optimal or near-optimal solutions for the medium- and large-sized problem instances in a short time.
Keywords: Customer order scheduling, Job-based processing, Lot streaming, Two-machine flow shop, Total completion time, Mixed-integer linear programming, Heuristic algorithm -
Consideration of environmental and social issues in addition to economic ones is a critical strategy that companies pay special attention to designing their supply chain. A resilient system prevents organizations from being surprised by catastrophic disruptions and critical conditions and eliminates high unwanted costs. In this study, a mixed-integer mathematical programming model is proposed to design a sustainable and resilient closed-loop supply chain network. Since suppliers are the most important external players, the slightest probability of disruptions can have a significant impact on chain performance. Accordingly, applying efficient strategies can be very helpful for coping with them. Also, because of the uncertain nature of some input parameters, the P-robust optimization method has been used to tackle them. An efficient algorithm has been carried out beside a heuristic method based on the strategic variables relaxation to solve the model. A case study of a lighting projectors industry has been conducted to evaluate the efficiency of the proposed approach. Finally, sensitivity analysis is performed on critical parameters of the problem. By solving the example, it is seen that 3 primary suppliers and 3 backups are selection, and 3 production centers, 2 collection centers and 1 repair, recycling and disposal centers have been established. The value of the economic objective function is equal to 565.857552 monetary units (MU). The CL-SCN environmental score is 658.07, while it is 608.93 in the social dimension. Eventually, the value of the final multi-objective function is equal to 0.658.Keywords: Closed-loop supply chain network, sustainability, resilience, Heuristic algorithm, Lighting projectors industry
-
با افزایش استفاده از حمل و نقل کانتینری یکی از مشکلات موجود، ثابت بودن ظرفیت پایانه های کانتینری به دلیل مشکلاتی همچون طولانی بودن فرایند ساخت و ساز، کمبود بودجه و فضا جهت ساخت مکان های جدید و همچنین کمبود نیروی انسانی است. به علاوه این ثابت بودن ظرفیت ، مشکلاتی از قبیل کاهش روابط تجاری، افزایش هزینه های نگهداری و انبار، افزایش هزینه های جابجایی و افزایش زمان بارگیری و تخلیه و همچنین مشکلات تخصیص کانتینرها را به دنبال دارد. برای رفع این مشکل بدون بالا بردن متراژ پایانه ، در این مقاله از یک روش مدل سازی ریاضی جهت تخصیص کانتینرها استفاده می شود که نه تنها برای حل این مشکل مورد استفاده است، بلکه در موارد دیگری نیز مانند حمل و نقل دریایی می تواند مورد استفاده قرار می گیرد. با توجه به حجم مسئله مورد استفاده در این تحقیق از الگوریتم های ابتکاری ، الگوریتم لوجیک استفاده گردیده که با توجه به بررسی های صورت گرفته مشخص شده است که این روش تا اکنون در مسایل مربوطه ، مورد استفاده قرار نگرفته است. در ضمن با توجه به توسعه الگوریتم لوجیک در این مقاله ، این روش را برای دیگر مسایل بهینه سازی در مقیاس بزرگ نیز می توان به کار برد. بسط و توسعه الگوریتمی به منظور بهبود الگوریتم های پیشنهادی که تمامی مفروضات ساده ساز را آزاد نماید به عنوان یک نوآوری در حل مسئله طراحی چیدمان کانتیرهای دریایی مطرح می گردد .
کلید واژگان: کانتیرهای دریایی، چیدمان کانتیر، الگوریتم لوجیک، الگوریتم ابتکاریBy increasing the use of container transportation, one of the existing problems is the constant capacity of container terminals due to problems, such as lengthy construction process, lack of budget and space to build new locations, as well as lack of manpower. Also, this constant capacity leads to problems such as reduced trade relations, increased maintenance and warehousing costs, increased transportation costs, and increased loading and unloading times, as well as container allocation problems. To solve this problem without increasing the area of the terminal, this paper present a mathematical model to allocate containers that can be used not only to solve this problem, but also in other cases such as transportation and shipping used. Due to the size of problems used in this research, a heuristic algorithm, namely LOGIC algorithm is used. According to studies, carried out in the literature, this algorithm has not been used in relevant problems so far. Also, due to the development of the LOGIC algorithm in this paper, it can be used for other large-scale optimization problems. The development of the proposed algorithm can be improved to solve the layout problem of maritime containers with other real constraints.
Keywords: Sea containers, Container layout, LOGIC algorithm, Heuristic Algorithm -
به منظور نگهداشت تولید نفت در مناطق دریایی، شرکت ملی نفت ایران با به کارگیری شناورهای پشتیبان و شناورهای سرچاهی متحرک، به صورت دوره یی خدمات عمومی و خدمات چاه ها را به تجهیزات مستقر در سکوهای سرچاهی نفت ارایه می کند. اما در این میان، شناورهای سرچاهی متحرک، خود نیازمند دریافت خدمات از شناورهای پشتیبان در دوره های مشخص و پنجره های زمانی معین هستند. شناورها در مقایسه با نیاز خدماتی تعداد کمی دارند؛ اما دارای هزینه ی جابه جایی بالایی هستند. به منظور مسیریابی دوره یی شناورهای خدماتی، یک مدل برنامه ریزی عدد صحیح مختلط با هدف کمینه سازی هزینه های جابه جایی و کمبود خدمات معرفی شده است. همچنین یک الگوریتم ابتکاری برای حل مسئله معرفی شده و عملکرد آن با اعمال روی داده های واقعی ارزیابی شده است. نتایج عددی حاکی از سرعت عمل الگوریتم در دست یابی به جواب های مناسب در زمان بسیار کم در مقایسه با الگوریتم های موجود است.
کلید واژگان: مسیریابی دوره یی، شناورهای خدماتی، سکوهای سرچاهی نفت، پنجره ی زمانی، مدل برنامه ریزی عدد صحیح مختلط، الگوریتم ابتکاریService vessels in the offshore oil industry have a noticeable logistics role in protection and continuity of quality and quantity of oil production. Offshore oil production takes place on oil wellhead platforms. In order to maintain oil production in offshore areas, using supportive vessels and mobile wellhead vessels, the National Iranian Oil Company periodically provides public services and well services for equipment located on oil wellhead platforms. However, in the meantime, mobile wellhead servants themselves need to receive service from supportive vessels in specific periods and, also, specific time windows. In fact, mobile wellhead servants have a dual role. On the one hand, they have a role to play in providing well services for oil wellhead platforms and, on the other hand, they have the role of receiving public services from supportive vessels. Service vessels are few in number compared to service requirements; however, they have a high shipping cost instead. Therefore, on the one side, using them without an appropriate plan leads to significant lost opportunity cost of oil production due to service shortages and, on the other hand, imposes high shipping costs. In order to determine the periodic routing of service vessels, a mixed-integer programming model is proposed with the aim of minimizing the cost of shipping and the lack of services. Given that the mathematical model is Np-hard, a heuristic algorithm based on practical conditions of the problem is introduced to solve the problem, and its performance is evaluated using real-life instances related to different oilfields located on the Iranian side in the Persian Gulf. Numerical results indicate the algorithm's speed in achieving appropriate solutions in a very short amount of time compared to existing algorithms. In fact, implementing the heuristic algorithm leads us to creating very good solutions in the primary iterations of running the heuristic algorithm and improving them in the next iterations.
Keywords: periodic routing, service vessels, oil wellhead platforms, time windows, mixed-integer programming model, heuristic algorithm -
This paper proposes a truck scheduling model in a cross dock system under multi-period, multi-commodity condition with fixed outbound departures. In an operational truck scheduling problem, outbound trucks leave the cross dock terminals at predetermined times and delayed loads are kept as inventory that are sent at the next period (a time slot in a day). The proposed model optimizes the inbound truck scheduling problem through the minimizing cross dock operational costs. An accelerated Benders decomposition technique based on Covering Cut Bundle (CCB) strategy and a heuristic approach are developed to solve the model. Finally, numerical analysis introduces the sensitivity of the input parameters to the objective value.
Keywords: Cross dock, scheduling, heuristic algorithm, sensitivity analysis -
Facility layout problems have been generally solved either hierarchically or integrated into other phases of plant design. In this paper, a hybrid method is introduced so that clustering and facilities layout can be simultaneously optimized. Each cluster is formed by a group of connected facilities and selection of the most appropriate cluster configuration is aimed. Since exact method by MIP is limited to small problems, a heuristic algorithm including constructive and improving phases is developed. In order to enhance the performance of the algorithm, systematic generation of intersection points inside available area together with shaking, split groups and Tabu list techniques are used.Then, two different examples are presented and the comparison of the results supports the merit of the proposed algorithm. For further validation, 18 test problems are solved both by the proposed algorithm and MIP by CPLEX. Comparison of the results reveals that for up to 13 facilities, the best solutions of the algorithm are equal to optimum solution of MIP but achieved in shorter times. For larger problems with higher number of facilities, even though processing times for MIP is much longer, in almost all cases, it cannot produce the best solutions of the proposed algorithm.Keywords: Facility layout problem, Heuristic Algorithm, cluster configuration, unequal facility sizes
-
مسئله تعیین اندازه انباشته و زمان بندی تولید، با استفاده بهینه از منابع و کاهش هزینه ها در پاسخ به تقاضای متنوع مشتریان در کمترین زمان ممکن، از اهمیت خاصی برخوردار است. در این مقاله، مسئله تعیین اندازه انباشته و زمان بندی تولید برای بسته های محصولات مکمل بررسی می شود. هر بسته شامل چند نوع محصول مکمل با تعداد مشخص و زمان های پردازش متفاوت است که روی خطوط موازی مختلف، در یک محیط تولید برای انبارش تولید می شوند. برای حل این مسئله، یک رویکرد سلسله مراتبی با اهداف کمینه هزینه های تولید، کمبود و موجودی بسته ها و بیشینه استفاده از ظرفیت، در سطح اول و هدف کمینه زمان تولید بسته ها در سطح دوم پیشنهاد می شود. حل مدل سطح دوم در ابعاد بزرگ دشوار است؛ بنابراین، یک الگوریتم ابتکاری افق غلتان ارائه می شود که مقایسه عملکرد آن با حل دقیق و نیز کران پایین پیشنهادی در نمونه های عددی مختلف، نشان دهنده کیفیت و زمان حل مطلوب آن است. برای اعتبارسنجی مدل، از داده های واقعی یک کارخانه کاشی استفاده شده است. مطابق نتایج، برنامه تولید، هزینه ها و زمان تکمیل بسته ها در مقایسه با وضع فعلی بهبود می یابد.کلید واژگان: الگوریتم ابتکاری، اندازه انباشته، برنامه ریزی سلسله مراتبی، بسته محصولات مکمل، زمان بندی تولیدThe lot sizing and scheduling problems for quick response to the diverse customers demands through the optimal utilization of resources and reducing the costs has a particular importance. In this paper, it is investigated the lot sizing and scheduling problem for complementary products. Each package consists of several complementary products with certain portions and different processing times, producing on the parallel production lines in a make-to-stock environment. To solve the problem, it is proposed a hierarchical approach with the objectives of minimizing the package costs, bound and stock, and maximizing the capacity utilization at the first level, and the aim of minimizing the completion time of complementary products at the second level. The second level model is difficult-to-solve in the large-sized instances; therefore, a rolling horizon heuristic solution algorithm is developed whose comparing performance to the exact solution as well as a proposed lower bound in different numerical examples, show the solution quality and its appropriate computation time. To validate the model, the actual data of a tile factory have been employed. Results show that the production plan, costs and times to complete the packages are improved, compared to the current process in the factory.Keywords: Complementary product package, Heuristic Algorithm, Hierarchical planning, Lot-sizing, production scheduling
-
با توسعه اقتصاد و افزایش رقابت در صنایع مختلف، کاهش هزینه های تولید تبدیل به یکی از مهم ترین دغدغه های شرکت های تولیدی شده است. برای نیل به این هدف باید تا حد امکان شرایط مدل سازی مسئله را به شرایط واقعی نزدیک نمود. در این مقاله، مسئله برنامه ریزی و زمان بندی خط تولید اسیدشویی در ناحیه نورد سرد مجتمع فولاد مبارکه اصفهان (Pickling Line Scheduling یا PLS) ارائه شده است. مسئله مورد بررسی، انتخاب مناسب و تعیین توالی برنامه های خط تولید و به طور همزمان انتخاب مناسب و تعیین توالی کلاف های داخل این برنامه ها با در نظرگرفتن محدودیت های متنوع حاکم بر تولید خط تولید اسیدشویی است. هدف مسئله، افزایش بهره وری خط تولید و کاهش هزینه های تولید است. به دلیل حجم بالای تولید در مجتمع فولاد مبارکه و تعدد محدودیت های تولیدی، نیاز به یک مدل ابتکاری برای حل مسئله در کوتاهترین زمان است به همین دلیل یک مدل ریاضی غیر خطی و یک الگوریتم ابتکاری برای حل مسئله ارائه شده است. نتایج حاصل از نمونه های واقعی مورد بررسی نشان دهنده کارایی الگوریتم نسبت به روش دستی برنامه ریزی مورد استفاده در شرکت فولاد مبارکه اصفهان است.کلید واژگان: اسیدشویی، نورد سرد، الگوریتم ابتکاری، برنامه ریزی تولیدJournal of Industrial Engineering Research in Production Systems, Volume:4 Issue: 9, 2017, PP 229 -237Reducing production costs has become one of the most important concerns, due to the economic development and increasing competitiveness in industries. To achieve this goal, considering real conditions is important. In this presentation, we investigate the production scheduling of a Pickling Line in Esfahan's Mobarakeh Steel Company called Pickling Line Scheduling (PLS). The problem is to generate multiple production turns for the Pickling Line coils and at the same time determine the sequence of these turns and select coils then the sequence coils of these turn so that the productivity and product quality both maximized while the production cost minimized. We formulate this problem as a mixed integer nonlinear program and propose a heuristic algorithm to obtain satisfactory solutions. Results on real production instances show heuristic algorithm is more effective and efficient with comparison to manual scheduling in Esfahan's Mobarakeh Steel Company.Keywords: Pickling Line, Cold Mill, Heuristic algorithm, Production Planning
-
Journal of Optimization in Industrial Engineering, Volume:10 Issue: 21, Winter and Spring 2017, PP 79 -92The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity to an execution mode of activities by considering relationship constraints, to achieve pre-determined objective(s). These goals vary with managers or decision makers of any organization who should determine suitable objective(s) considering organization strategies. We also introduce the preemptive extension of the problem which allows activity splitting. In this paper the preemption multi-mode resource-constrained project scheduling problem (P-MMRCPSP) with Minimum makespan and the maximization of net present value (NPV) has been considered. Since the considered model is NP-Hard, The performance of our proposed model is evaluated by comparison with two well-known algorithms; non-dominated sorting genetic algorithm (NSGA II), multi-objective imperialist competitive algorithm (MOICA). These metaheuristics have been compared on the basis of a computational experiment performed on a set of instances obtained from standard test problems constructed by the ProGen project generator, where, additionally, cash flows were generated randomly with the uniform distribution. Since the effectiveness of most meta-heuristic algorithms significantly depends on choosing the proper parameters. A Taguchi experimental design method (DOE) was applied to set and estimate the proper values of GAs parameters for improving their performances. The computational results show that the proposed MOICA outperforms the NSGA-II.Keywords: Multi, objective Project Scheduling, Resource Constraint, Preemptive, Net Present Value, Meta, heuristic Algorithm
-
From the most important issues in the design of large logistics network in times of crisis are providing a timely quick reaction for treating of injured people and the rapid distribution of medicines and medical equipment. In this paper, a multi-objective model is presented that aims to determine the location of transfer points and hospitals to provide timely quick reaction for treating injured people as well as to determine unreliable and reliable depots for the distribution of medicines and medical equipment. Given that the dynamic nature of the great crises, the parameters of the model has considered as uncertain and dynamic. To solve the model, the hybrid meta-heuristic algorithm is proposed which is composed of simulated annealing algorithm and CPLEX. By comparing the results can be seen that the proposed meta-heuristic hybrid algorithm is efficient.Keywords: Location, allocation, Emergency medical services logistics, Hybrid meta, heuristic algorithm, Major crises
-
Covering models have found many applications in a wide variety of real-world problems; nevertheless, some assumptions of covering models are not realistic enough. Accordingly, a general approach would not be able to answer the needs of encountering varied aspects of real-world considerations. Assumptions like the unavailability of servers, uncertainty, and evaluating more factors at the same time, are a sort of assumptions, with which covering models are always faced; however, these models are not able to find any answers for them. Therefore, how to deal with these sorts of assumptions has been always a big question. In this research, for facing unavailability and uncertainty in input data, backup covering and interval full-ranking model were addressed, respectively. Furthermore, by combining backup covering and interval full-ranking models (also conceptions), not only time was saved and more factors like efficiency and cost were simultaneously evaluated, but also covering considerations were reachable in real aspects.Keywords: Emergency service, Backup coverage, Interval full, ranking, Meta, heuristic algorithm, Multi, objective Optimization
-
This paper considers the reliable multi-product multi-vehicle multi-type link logistics network design problem (RMLNDP) with system disruptions, which is concerned with facilities locating, transshipment links constructing, and also allocating them to the customers in order to satisfy their demand on minimum expected total cost (including locating costs, link constructing costs, and also expected transshipment costs in normal and disruption conditions). The motivating application of this class of problem is in multi-product, multi-vehicle, and multi-type link logistics network design regarding to system disruptions simultaneously. In fact, the decision makers in this area are not only concerned with the facility locating costs, link constructing costs, and logistical costs of the system but also by focusing on the several system disruptions states in order to be able to provide a reliable sustainable multi configuration logistic network system. All of the facility location plan, link construction plan and also link transshipment plan of the demands in the problem must be efficiently determined while considering the several system disruptions. The problem was modeled as a MIP. Also, a hybrid heuristic, based on LP relaxation approach, is proposed. Computational experiments illustrate that the provided algorithm will able to substantially outperform the proposed integer programming model in terms of both finding and verifying the efficient optimal (or near optimal) solution at a reasonable processing time.Keywords: Multi, product, Multi, type transshipment links, Multi, vehicles, Logistic network design, Disruptions, Reliability, Two stage decomposing heuristic, LP relaxation, Heuristic algorithm
-
A Heuristic Algorithm for Nonlinear Lexicography Goal Programming with an Efficient Initial SolutionJournal of Optimization in Industrial Engineering, Volume:7 Issue: 15, Summer and Autumn 2014, PP 77 -83In this paper, a heuristic algorithm is proposed in order to solve a nonlinear lexicography goal programming (NLGP) by using an efficient initial point. Some numerical experiments showed that the search quality by the proposed heuristic in a multiple objectives problem depends on the initial point features, so in the proposed approach the initial point is retrieved by Data Envelopment Analysis to be selected as an efficient solution. There are some weaknesses in classic NLGP algorithm that lead to trapping into the local optimum, so a simulated annealing concept is implemented during the searching stage to increase the diversity of search in the solution space. Some numerical examples with different sizes were generated and comparison of results confirms that the proposed solution heuristic is more efficient than the classic approach. Moreover the proposed approach was extended for cases with ordinal weights of inputs or outputs. The computational experiments for 5 numerical instances and the statistical analysis indicate that the proposed heuristic algorithm is a robust procedure to find better preferred solution comparing to the classic NLGP.Keywords: Nonlinear goal programming, Simulated Annealing, Data Envelopment Analysis, Heuristic algorithm, Efficient initial solution
-
Journal of Optimization in Industrial Engineering, Volume:7 Issue: 15, Summer and Autumn 2014, PP 15 -25In this paper, a novel mathematical model for a preemption multi-mode multi-objective resource-constrained project scheduling problem with distinct due dates and positive and negative cash flows is presented. Although optimization of bi-objective problems with due dates is an essential feature of real projects, little effort has been made in studying the P-MMRCPSP while due dates are included in the activities. This paper tries to bridge this gap by studying tardiness MMRCPSP, in which the objective is to minimize total weighted tardiness and to maximize the net present value (NPV). In order to solve the given problem, we introduced a Non-dominated Ranking Genetic Algorithm (NRGA) and Non-Dominated Sort Genetic Algorithm (NSGA-II). Since the effectiveness of most meta-heuristic algorithms significantly depends on choosing the proper parameters. A Taguchi experimental design method was applied to set and estimate the proper values of GAs parameters for improving their performances. To prove the efficiency of our proposed meta-heuristic algorithms, a number of test problems taken from the project scheduling problem library (PSPLIB) were solved. The computational results show that the proposed NSGA-II outperforms the NRGA.Keywords: Multi, objective Project Scheduling, Resource Constraint, Preemption, Net Present Value, Meta, heuristic Algorithm
-
تخصیص نیروی انسانی به فعالیت های پروژه برای زمانبندی آن ها، یکی از نزدیک ترین حالات به شرایط واقعی مسائل زمانبندی است، اما با توجه به تازگی و تعلق این مسئله به دسته مسائل غیر چندجمله ای سخت، تا کنون روش های دقیق فقط قادر به حل مسائل با اندازه کوچک بوده اند. در این مسئله، منابع تجدیدپذیر از نوع ستادی بوده، به طوری که هر فرد با مهارت های چندگانه فقط قادر است، یکی از مهارت های مورد نیاز فعالیت ها را در زمان مشخص برآورده کند. در این مقاله، با تعریف مفهوم کارآیی برای اعضای پروژه، یک مدل برنامه ریزی ریاضی برای حل همزمان دو مسئله بالا ارائه می شود. از آنجا که این مسئله جزو مسائل غیر چند جمله ای سخت طبقه بندی می شود، برای حل آن یک الگوریتم فراابتکاری تکامل دیفرانسیلی توسعه داده شده است. نتایج حاصل بیانگر کارآیی این الگوریتم فراابتکاری در حل همزمان دو مسئله زمانبندی پروژه و تخصیص نیروی انسانی است.
کلید واژگان: زمانبندی پروژه، تخصیص نیروی انسانی، کارآیی، الگوریتم فراابتکاریThe allocation of human resources to project activities in order to schedule them is one of the closest states to the actual conditions of scheduling problems. But regarding the fact that this problem belongs to the class of Np-hard problems; so far the exact methods have only been able to solve the small size problems. In this study، the renewable resources are humans in a way that every staff with multiple skills is only able to satisfy one of activities’ skill requirements at a specific time. In this paper، defining the efficiency degrees for the staff، a mathematical programming model is presented for simultaneous solving of the two problems. Since this problem belongs to Np-hard problems، a meta-heuristic differential evolution algorithm is developed for solving real-world cases. The results prove the efficiency of the algorithm in simultaneous solving of project scheduling and human resources allocation problems.Keywords: Project scheduling, Human resource allocation, Efficiency, Meta, heuristic algorithm -
مسائل برنامه ریزی تولید عموما به عنوان مسائل برنامه ریزی عدد صحیح مختلط مدلسازی می شوند؛ و به علت پیچیدگی محاسباتی بالا و ذاتی این نوع مسائل، از طریق الگوریتم های ابتکاری حل می شوند. در این مقاله، یک مدل برنامه ریزی عدد صحیح مختلط غیرخطی برای برنامه ریزی تولید چند محصولی- چند دوره ای به منظور بازپرسازی سفارشات خریدار و کمینه سازی هزینه های تامین کننده طراحی شده است. در این مدل فرض بر آن است که مقدار سفارش ثابت است و سفارش دهی یک باره انجام می شود. این مدل مطابق با مفروضات شرکت ساپکو که یک تامین کننده بزرگ قطعات اتوموبیل در ایران است، و یکی از شرکت های همکار آن توسعه یافته است. همچنین، یک الگوریتم ابتکاری کارآمد مبتنی بر جست وجوی A* برای حل این مدل ریاضی پیشنهاد شده است. الگوریتم جست وجوی پیشنهادی نیازی به یک جواب اولیه ندارد؛ همچنین با اعمال کنترل بر حالت های ذخیره شده در لیست آماده شاخه زنی می تواند بر محدودیت سربار حافظه غلبه نماید. در حقیقت علی رغم سادگی این الگوریتم که بر اساس روابط ساده مدیریت موجودی بنا شده است، قادر است در مقایسه با روش حل دقیق، یک الگوریتم جست وجوی حریصانه، و الگوریتم شبیه سازی تبرید به عنوان یک الگوریتم فراابتکاری، به صورت کارآمدی جواب های بهینه یا نزدیک بهینه حاصل آورد.
کلید واژگان: بازپرسازی سفارشات، برنامه ریزی عدد صحیح مختلط غیرخطی، الگوریتم ابتکاری، جست وجوی A*Journal of Industrial Engineering Research in Production Systems, Volume:2 Issue: 3, 2014, PP 63 -75Production planning problems are generally modeled as mixed integer programming problems; and solved through heuristic algorithms، because of their innate high computational complexity. In this paper، a mixed integer nonlinear programming (MINLP) model is designed for multi-item، multi-period production planning to replenish orders of the buyer and minimizing the supplier’s costs. It is supposed that the order quantity is constant، and ordering occurs at once. This model has been developed according to the realistic assumptions of SAPCO Company، which is a major supplier of automotive parts in Iran، and one of its partner companies. In addition، an efficient heuristic algorithm based on A* search has been proposed to solve this mathematical model. The proposed search algorithm does not need an initial solution; also، it can overcome the memory overhead through bounding the stored states in its open-list. Actually، in spite of the simplicity of the proposed algorithm، which is established based on the simple inventory management equations; it is able to generate efficiently optimal or near-optimal solutions in comparison with an exact solution method، a greedy search algorithm، and simulated annealing algorithm as a metaheuristic algorithm.Keywords: Order replenishment, Mixed integer nonlinear programming, Heuristic algorithm, A* search -
یکی از اساسی ترین مشکلات طراحی شبکه زنجیره تامین عدم قطعیت است، برای در نظر گرفتن این موضوع در این تحقیق از یک روش نوین حل مستقیم برای طراحی شبکه لجستیک سه سطحی، در محیط فازی استفاده می گردد. رویکرد حل مستقیم ارائه شده، بر اساس یک روش رتبه بندی فازی و الگوریتم فراابتکاری بوده و جوابی که بتواند موازنه ای بین درجه شدنی بودن محدودیت ها و بهینگی تابع هدف (با توجه به وزن های در نظر گرفته شده) ایجاد کند، ارائه می کند. هم چنین نوآوری دیگر این تحقیق را می توان در طراحی شبکه زنجیره تامین در حضور پارامترها و متغیرهای فازی عنوان کرد. زیرا در مطالعات پیشین با وجود فازی بودن محیط، متغیرها قطعی در نظر گرفته شده اند. علاوه بر این، هر مدل برنامه ریزی ریاضی فازی شامل متغیرهای تصمیم فازی را می توان با روش مستقیم پیشنهادی به سادگی حل کرد. برای نشان دادن عملکرد روش پیشنهادی، مثال عددی شبیه سازی شده مورد بررسی قرار می گیرد. نتایج بیانگر کارآیی مناسب روش پیشنهادی است.
کلید واژگان: طراحی شبکه زنجیره تامین، برنامه ریزی ریاضی فازی، متغیر تصمیم فازی، الگوریتم های فراابتکاری، الگوریتم ژنتیکOne of the main problems of supply chain network design is uncertainty. To consider this, designing of a three-echelon supply chain in a fuzzy environment is discussed in this paper. Since satisfaction of some constraints in supply chain is vital and necessary, so this research proposes a direct solution approach to find the solution which represents the trade-off between feasibility degree of constraints and satisfaction degree of the goal. Furthermore, another novation of this paper is optimizing a supply chain network design problem containing both of the parameters and decision variables as fuzzy number. Each fuzzy mathematical programming model with fuzzy decision variables can be solved effectively by employing direct solution approach. A numerical example is discussed and analyzed in order to show efficiency of the proposed approach.Keywords: Supply Chain Network Design, Fuzzy Mathematical Programming, Fuzzy Decision Variable, Meta, Heuristic Algorithm, Genetic Algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.