به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

simulated annealing algorithm

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه simulated annealing algorithm در نشریات گروه فنی و مهندسی
  • Monireh Babazadeh, A. Mirzazadeh *
    Developing and optimizing effective inventory systems considering realistic constraints and practical assumptions can help managers remarkably decrease inventory and consequently supply chain costs. In this research, we propose a new variant of the multi-item inventory model taking into account warehouse capacity, on-hand budget constraints, imperfect products in supply deliveries and partial backordering where the products can be converted into perfect products by a local repair shop. To deal with the proposed model, three solution approaches, including interior-point technique, as an exact method, and two metaheuristics based on Simulated Annealing (SA) and Water Cycle Algorithm (WCA), are proposed. Extensive computational experiments are conducted on different sets of instances. Using different measures such as RPD, PRE, and computational time, the performance of the solution approaches is evaluated within different test instances. The results show that the WCA outperforms the two other approaches and leads to the best solutions in the proposed problem.
    Keywords: Inventory, Imperfect Products, Repair, Partial Backordering, Water Cycle Algorithm, Interior-Point Algorithm, Simulated Annealing Algorithm
  • Hamid Sarkheil *, Mirza Hassan Hosseini

    Digital marketing has become vital to businesses' marketing strategies in today's technology and social media era. However, the effectiveness of digital marketing campaigns largely depends on accurately identifying the target audience. This study aims to implement the simulated annealing initiative algorithm for digital marketing, as well as audience classification and optimum target audience selection. Traditional methods of target audience identification, such as demographic, geographic, and psychographic segmentation, are only sometimes effective in identifying the most responsive audience. Therefore, advanced techniques such as clustering, genetic, and simulated annealing algorithms have been proposed to identify the optimum target audience. The heuristic simulated annealing algorithm is one of the most promising techniques for optimum target audience identification. It is widely used in combinatorial optimization problems and applied in various fields such as engineering, economics, management, and computer science. In this research, a digital marketing campaign is implemented for a new line to sell training courses in empowerment and competency in human resource management within the mining industry. After conducting market research, we have identified five critical segments: age, gender, income group, place of residence, and level of university education. The number of customers at each customer journey stage was 740 people in brand development, email, and advertising campaigns, of which 620 people are in the "Awareness" stage, 431 people in the "Interest" stage, 261 people in the "Consideration" stage, 203 people in the "Intend" stage, 179 people in the "Purchase" and finally, 179 People were evaluated in the "loyalty" stage for the case of educational service company. The results show we should target 20% of our marketing efforts towards the 18-24 age group, 30% towards females, 20% towards high-income individuals, 10% towards rural areas, and 20% towards University education level in BSc. The best cost per conversion we obtain is 78.105×106 Rials. The results show that the simulated annealing algorithm can be valuable for identifying the optimum target audience in digital marketing campaigns. By considering the entire customer journey and allowing for more complex audience targeting, the algorithm can help companies optimize their marketing strategies and maximize their profits.

    Keywords: Target Audience, Digital Marketing, Simulated annealing algorithm
  • M.B. Fakhrzad *, F. Goodarzian
    Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximize the profit of the Citrus supply chain network. Due to the complexity of the model when considering large-scale samples, two well-known meta-heuristic algorithms such as Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms have been utilized. Additionally, a new multi-objective ACO algorithm based on a set of non-dominated solutions form the Pareto frontier developed to solve the mathematical model. An extensive comparison based on different measurements analyzed to find a performance solution for the developed problem in the three sizes (small, medium, and large-scale). Finally, the various outcomes of numerical experiments indicate that the MOACO algorithm is more reliable than other algorithms.
    Keywords: citrus supply chain, MINLP model, Simulated Annealing Algorithm, ant colony optimization algorithm
  • Mohsen Saffarian *, Malihe Niksirat, Seyed Mahmood Kazemi
    In this paper, an integer linear programming formulation is developed for a novel fuzzy multi-period multi-depot vehicle routing problem. The novelty belongs to both the model and the solution methodology. In the proposed model, vehicles are not forced to return to their starting depots. The fuzzy problem is transformed into a mixed-integer programming problem by applying credibility measure whose optimal solution is an (α,β)-credibility optimal solution to the fuzzy problem. To solve the problem, a hybrid genetic-simulated annealing-auction algorithm (HGSA), empowered by a modern simulated annealing cooling schedule function, is developed. Finally, the efficiency of the algorithm is illustrated by employing a variety of test problems and benchmark examples. The obtained results showed that the algorithm provides satisfactory results in terms of different performance criteria.
    Keywords: Periodic routing problem, Multi-Depot, Hybrid algorithm, auction algorithm, Genetic Algorithm, Simulated annealing algorithm
  • M. Bakhshi, S. E. Hashemi *, H. Dezhdar
    In this research, we present a mathematical model for allocating people to different jobs and shifting employees between related jobs. This action will reduce the repetitive activities workload and ergonomic risks at the planned time horizon, and finally increases the organization's efficiency. In this proposed model, the devices are semi-automatic and it is possible to allocated more than one task to one person. Regarding the modeling and the case study of the constraints, it is shown that the complexity of this problem type is NP-Hard, and the result of accurate methods for solving the problem is not possible in a reasonable time. Due to this Simulated Annealing (SA) algorithm is used to study the proposed model and comparison of the results of SA algorithm with the results of precise optimization methods shows the better performance of the Simulated Annealing algorithm in terms of the time and answer quality.
    Keywords: Job Rotation, Mathematical Modeling, physical injuries, Simulated Annealing Algorithm
  • Mostafa Setak *, Asal Karimpour
    Due to many damages that human activities have imposed on the environment, authorities, manufacturers, and industry owners have taken into account the development of supply chain more than ever. One of the most influential and essential human activities in the supply chain are transportation which green vehicles such as electric vehicles (EVs) are expected to generate higher economic and environmental impact. To this end, designing efficient routing scheme for the fleet of EVs is significant. A remarkable issue about EVs is their need to stations for charging their battery. Due to the existence of time limitations, more attention should be paid to time spent at the charging station, so considering the queuing system at charging stations makes more precise time calculations. Furthermore, multi-graphs are more consistent with the characteristics of the transportation network. Hence, we consider alternative paths including two criterion cost and energy consumption in the network. First, we develop a mixed integer linear programming for the electric vehicle routing problem on a multi-graph with the queue in charging stations to minimize the traveling and charging costs. Since the proposed problem is NP-hard in a strong sense, we provide a simulated annealing algorithm to search the solution space efficiently and explore a large neighborhood within short computational time. The efficiency of the model is investigated with numerical and illustrative examples. Then the sensitivity analysis is performed on the proposed model to indicate the importance of the queuing system and the impact of battery capacity on the penetration of EVs.
    Keywords: Electric vehicle routing, charging station, queuing system, multigraph, alternative paths, simulated annealing algorithm
  • M. Rabbani *, S. Aghamohamadi, H. Farrokhi Asl, M. Alavi Mofrad

    In this paper, a new multi-objective time-cost constrained resource availability cost problem is proposed. The mathematical model is aimed to minimize resource availability cost by considering net present value of resource prices in order to evaluate the economic aspects of project to maximize the quality of project's resources to satisfy the expectations of stakeholders and to minimize the variation of resource usage during project. Since the problem is NP-hard, to deal with the problem a simulated annealing approach is applied, also to validate our results GAMS software is used in small size test problems. Due to the dependency of SA algorithm to its initial parameters a taghuchi method is used to find the best possible SA parameters combinations to reach near optimum solutions in large size problems.

    Keywords: Constrained project scheduling, resource availability cost problem, Simulated Annealing Algorithm, Metaheuristic Algorithms
  • Mahdi Alinaghiana *, S.Reza Madania, Hossain Moradia

    This paper presents a new robust mathematical model for the multi-product capacitated single allocation hub location problem with maximum covering radius. The objective function of the proposed model minimizes the cost of establishing hubs, the expected cost of preparing hubs for handling products, shipping and transportation in all scenarios, and the cost variations over different scenarios. In the proposed model, a single product of a single node cannot be allocated to more than one hub, but different products of one node can be allocated to different hubs. Also, a product can be allocated to a hub only if equipment related to that product is installed on that hub. Considering the NP-Hard complexity of this problem, a GA-based meta-heuristic algorithm is developed to solve the large scale variants of the problem. To evaluate the performance of the proposed algorithm, its results are compared with the results of exact method and simulated annealing algorithm. These results show the good performance of the proposed algorithm.

    Keywords: Multi-product, Hub location, Single allocation, Robust optimization, Genetic algorithm, Simulated annealing algorithm
  • M. Najafi, A. Ghodratnama*, S.H.R. Pasandideh

    This paper aims at single-objective optimization of multi-product for three-echelon supply chain architecture consisting of production plants, distribution centers (DCs) and customer zones (CZs). The key design decisions considered are: the quantity of products to be shipped from plants to DCs, from DCs to CZs , cycle length, and production quantity so as to minimize the total cost .To optimize the objective, three-echelon network model is mathematically represented considering the associated constraints, production, capacityand shipment costs and solved using genetic algorithm (GA) and Simulated Annealing (SA).Some numerical illustrations are provided at the end to not only show the applicability of the proposed methodology, butalso to select the best method using a t-test along with the simple additive weighting (SAW) method.

    Keywords: Three echolon supply chain, Genetic algorithm, Simulated annealing Algorithm
  • محمدرضا قطره سامانی، سید مهدی حسینی مطلق*، سعید یعقوبی، عباس جوکار
    در سال های اخیر، رویکردهای بهینه سازی یکپارچه در زنجیره تامین، به یکی از مسائل مورد توجه محققان تبدیل شده است. در این پژوهش، مدلی برای مسئله مکان یابی- مسیریابی دوسطحی با شرایط گذاشت و برداشت ارائه می شود؛ به طوری که بین مراکز اصلی توزیع و مشتریان، یک لایه از تسهیلات با نام انبار میانی استقرار می یابد. هریک از مشتریان این شبکه، علاوه بر تقاضای دریافت کالا، هم زمان درخواست تحویل کالا به وسایل نقلیه را نیز دارند. در این مقاله، ابتدا یک مدل ریاضی برنامه ریزی عدد صحیح مختلط دوسطحی برای این مسئله ارائه می شود که در آن ها، ظرفیت انبارهای مرکزی، انبارهای میانی و وسایل نقلیه، محدود درنظر گرفته شده است. سپس برای حل مدل مذکور، روش حل فراابتکاری ترکیبی با استفاده از الگوریتم های ژنتیک و شبیه سازی تبرید ارائه شده است. نتایج محاسباتی حاصل از حل مسائل نمونه در اندازه های مختلف و تحلیل نتایج آن نشان می دهد الگوریتم ارائه شده کارایی مناسبی دارد.
    کلید واژگان: الگوریتم ژنتیک، الگوریتم شبیه سازی تبرید، دوسطحی، گذاشت و برداشت هم زمان، مسئله مکان یابی - مسیریابی
    Mohammadreza Ghatreh Samani, Seyyed-Mahdi Hosseini-Motlagh *, Saeed Yaghoubi, Abbas Jokar
    Integrated optimization approach in supply chain has become one of the most important and interesting subjects for researchers in recent years. In this paper, a mathematical model is presented for two-echelon location-routing problem with simultaneous pickup and delivery, so that a layer of facilities with the name of “middle warehouse” are located between main distribution centers and customers. Each customer has demands for commodity reception and delivery simultaneously. In this paper, first a two-echelon integer programming mathematical model, which central/middle storerooms capacities are considered limited, is presented. Then, using genetic and simulated annealing algorithms, a hybrid metaheuristic method is delivered for solving the model. Numerical results of solving sample instances in different sizes confirm the good performance of our approach.
    Keywords: Genetic Algorithm, Location-routing problem, Simulated annealing algorithm, Simultaneous pickup, delivery, Two-echelon
  • جمال ارکات*، پرک قدس، فردین احمدی زر
    سیستم بارانداز متقاطع یک راهبرد لجستیکی است که براساس آن کالاهای تخلیه شده از کامیون های ورودی، تقریبا بدون ذخیره سازی و به صورت مستقیم در کامیون های خروجی بارگیری می شوند؛ بنابراین، تقریبا هیچ موجودی در این مراکز توزیع، نگهداری نمی شود. در این تحقیق، مسئله تخصیص کامیون ها به در های بارانداز و تعیین توالی هم زمان کامیون های ورودی و خروجی در یک بارانداز متقاطع دارنده چند در تخلیه و بارگیری بررسی می شود. بدین منظور، مسئله مورد بررسی در قالب یک مدل ریاضی برنامه ریزی عدد صحیح مختلط ارائه می شود. به دلیل ناچندجمله ای سخت بودن مسئله و همچنین به منظور حل مسئله در مقیاس بزرگ، یک الگوریتم شبیه سازی تبرید ارائه می شود. به منظور ارزیابی صحت مدل ریاضی و عملکرد الگوریتم پیشنهادی، تعدادی مثال عددی، حل و نتایج تحلیل می شوند.
    کلید واژگان: الگوریتم شبیه سازی تبرید، بارانداز متقاطع، تخصیص در های بارانداز، زمان بندی کامیون ها
    Jamal Arkat *, Parak Qods, Fardin Ahmadizar
    In a supply chain, cross-docking is one of the most innovative systems for ameliorating the operational performance at distribution centers. Cross-docking is a logistics strategy in which freight is unloaded from inbound trucks and (almost) directly loaded into outbound trucks, with little or no storage in between, thus no inventory remains at the distribution center. In this paper, we consider the scheduling problem of inbound and outbound trucks with multiple dock doors, which the aim is to minimize the makespan. In this research, a mathematical model is derived to find the optimal solution. Also a Simulated Annealing algorithm is adapted to find near optimal solution, as the mathematical model will not be applicable for large scale problems. Numerical examples are presented in order to specify the efficiency of the proposed algorithm in comparison with mathematical model.
    Keywords: Cross-docking, Door assignment, Simulated annealing algorithm, Truck scheduling
  • محمد علی بهشتی نیا*، امیر قاسمی، معین فرخ نیا
    این پژوهش مسئله زمان بندی در زنجیره تامین دو مرحله ای را بررسی می کند. مرحله اول شامل تامین کنندگان، مرحله دوم شامل ناوگان حمل ونقل کالاها به یک شرکت تولیدکننده محصولات نهایی است. هدف تخصیص سفارش ها به تامین کنندگان، تعیین توالی تولید در تامین کنندگان، تخصیص سفارش ها به وسایل نقلیه و تعیین اولویت حمل سفارش ها از طریق وسایل نقلیه به منظور کمینه کردن مجموع زمان های پردازش و حمل است. این مسئله تاکنون در ادبیات موضوع بررسی نشده است. ابتدا مدل ریاضی به صورت برنامه ریزی عدد صحیح مختلط ارائه می شود. به منظور حل مسئله، یک الگوریتم فرا ابتکاری ترکیبی ارائه می شود که تلفیق جدیدی از الگوریتم های ژنتیک و شبیه سازی تبرید را درنظر می گیرد. الگوریتم به منظور ارزیابی کیفیت با یکی از الگوریتم های مطرح شده در ادبیات موضوع، الگوریتم ژنتیک و الگوریتم شبیه سازی تبرید به صورت مجزا مقایسه می شود. مقایسه نتایج نهایی محاسبات الگوریتم ها بیانگر برتری الگوریتم تلفیقی در مقایسه با الگوریتم های مورد مقایسه است.
    کلید واژگان: الگوریتم ژنتیک، الگوریتم شبیه سازی تبرید، برنامه ریزی حمل ونقل، زمان بندی، زنجیره تامین
    Mohammad Ali Beheshtinia *, Amir Ghasemi, Moein Farokhnia
    In this paper a scheduling problem in a 2-stage supply chain is discussed. Suppliers are in the first stage and in the second stage, there are vehicles which carry orders to a manufacturing center. The purpose is to allocate orders to suppliers, sequence the suppliers’ production, allocate orders to transport vehicles and prioritize orders that should be carried by vehicles to minimize the total time of the process and transportation. This issue has not yet been discussed in the literature. First, a mixed integer programming mathematical model is presented. Then, in order to solve the problem, a new algorithm is proposed which is a new combination of genetic and Simulated Annealing Algorithms. To evaluate the performance of the algorithm, it is compared with one of the algorithms presented in the literature, genetic algorithm and simulated annealing algorithm, separately. Comparison results indicate the advantage of the proposed algorithm in comparison with other algorithms.
    Keywords: Genetic Algorithm, Scheduling, Simulated annealing algorithm, Supply chain, Transport planning
  • Jamal Arkat, Parak Qods, Fardin Ahmadizar
    In a supply chain, cross-docking is one of the most innovative systems for ameliorating the operational performance at distribution centers. Cross-docking is a logistics strategy in which freight is unloaded from inbound trucks and (almost) directly loaded into outbound trucks, with little or no storage in between, thus no inventory remains at the distribution center. In this study, we consider the scheduling problem of inbound and outbound trucks with multiple dock doors, aiming at the minimization of the makespan. The considered scheduling problem determines where and when the trucks must be processed; also due to the interchangeability specification of products, product assignment is done simultaneously as well. Inbound trucks enter the system according to their release times, however, there is no mandatory time constraint for outbound truck presence at a designated stack door; they should just observe their relative docking sequences. Moreover, a loading sequence is determined for each of the outbound trucks. In this research, a mathematical model is derived to find the optimal solution. Since the problem under study is NP-hard, a simulated annealing algorithm is adapted to find the (near-) optimal solution, as the mathematical model will not be applicable to solve large-scale real-world cases. Numerical examples have been done in order to specify the efficiency of the metaheuristic algorithm in comparison with the results obtained from solving the mathematical model.
    Keywords: Cross, docking, Truck scheduling, Release time, Simulated annealing algorithm
  • E. Babaee Tirkolaee*, M. Alinaghian, M. Bakhshi Sasi, M. M. Seyyed Esfahani
    The urban waste collection is one of the major municipal activities that involves large expenditures and difficult operational problems. Also, waste collection and disposal have high expenses such as investment cost (i.e. vehicles fleet) and high operational cost (i.e. fuel, maintenance). In fact, making slight improvements in this issue lead to a huge saving in municipal consumption. Some incidents such as altering the pattern of waste collection and abrupt occurrence of events can cause uncertainty in the precise amount of waste easily and consequently, data uncertainty arises. In this paper, a novel mathematical model is developed for robust capacitated arc routing problem (CARP). The objective function of the proposed model aims to minimize the traversed distance according to the demand uncertainty of the edges. To solve the problem, a hybrid metaheuristic algorithm is developed based on a simulated annealing algorithm and a heuristic algorithm. Moreover, the results obtained from the proposed algorithm are compared with the results of exact method in order to evaluate the algorithm efficiency. The results have shown that the performance of the proposed hybrid metaheuristic is acceptable.
    Keywords: Waste collection, CARP, hybrid metaheuristic algorithm, simulated annealing algorithm, robust optimization
  • Payam Khosravi, Mehdi Alinaghian, Seyed Mojtaba Sajadi, Erfan Babaee
    Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems. In addition, it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel and maintenances) so that generating small improvements in this area can lead to huge savings in municipal expenditures. Among the issues raised in the process of decisions making by managers and associated policy makers, one can point to determining the optimal weekly policies of waste collection. In this paper, the periodic capacitated arc routing problem (PCARP)in mobile disposal sites is described and the authors seek to determine the optimal routes of required edges (streets or alleys) per week, number and location of mobile disposal sites, and the number of required vehicles. We present two simulated annealing algorithms, which are different in cooling schedule and number of iterations of each temperature. To evaluate the performance of these algorithms on small-sized problems, the solver “CPLEX"in application “GAMS” is used. The experimental results show that the presented algorithms have appropriate performance and a reasonable time range.
    Keywords: Periodic Arc Routing, Mobile Disposal Sites, Waste collection, Simulated annealing algorithm, Required Edges
  • محمد سعید صباغ، مهدی علینقیان، کمیل زمانلو
    این مقاله در ارتباط با معرفی، مدل سازی و حل مسئله مسیریابی وسیله نقلیه وابسته به زمان با محدودیت های بارگیری دوبعدی است. این مسئله درصدد تحویل اقلام مستطیلی شکل با استفاده از یک ناوگان همگن از وسایط نقلیه است. در این مسئله، زمان طی کردن مسیر بین دو گره نه تنها به فاصله آن دو گره از همدیگر، بلکه به زمان خروج از گره مبدا نیز بستگی دارد. در نظر گرفتن چنین فرضی برای طراحی مسیر در محیط های شهری ضروری به نظر می رسد؛ چراکه ازدحام ناشی از ترافیک در ابتدا و انتهای زمان کاری، زمان طی مسیر را تغییر خواهد داد. با وجود کاربردی بودن چنین مسئله ای، پژوهشی که به بررسی آن پرداخته باشد، وجود ندارد. در این مقاله، یک مدل جدید برای مسئله مسیریابی وسیله نقلیه وابسته به زمان با محدودیت های بارگیری دوبعدی ارائه شده است. پس از معرفی و مدل سازی مسئله مذکور، به منظور بررسی و صحه گذاری بر مدل ارائه شده، مسائلی با ابعاد کوچک حل گردیده و برای حل مسئله در ابعاد بزرگ، از الگوریتم های ژنتیک بهبودیافته و شبیه سازی تبرید استفاده شده است که در روش های مذکور برای بررسی امکان پذیری بارگیری اقلام در درون وسایط نقلیه، مجموعه ای از روش های ابتکاری به کار گرفته می شود. نتایج محاسباتی نشان می دهد که الگوریتم های ارائه شده نتایج مناسبی ارائه می دهند.
    کلید واژگان: مسئله مسیریابی وسیله نقلیه وابسته به زمان، محدودیت بارگیری دوبعدی، الگوریتم ژنتیک، الگوریتم شبیه سازی تبرید
    Mohammad Said Sabbagh, Mehdi Alinaghian, Komail Zamanloo
    This paper is dealing with Two-dimensional loading time-dependent vehicle routing problem. A new mathematical model is proposed and solved. Aforementioned problem is about delivering rectangular items to customers. In the problem that we considered، travel time between two nodes depends not only on their distance، but also depends on departure time from origin node. Such an assumption seems to be important for route design in urban areas، because traffic jam changes travel time on beginning and ending of work time. Despite applicability of such an issue، there is not any research considering this problem. In this paper، we proposed a new mathematical model. For evaluating and validating this model، some small-scale problems solved and for large-scale problems، a simulated annealing and an improved genetic algorithm are proposed. For checking feasibility of loading of assigned items to a vehicle، a collection of heuristic algorithms is used. Computational results confirm the effectiveness of the solving approaches.
    Keywords: Vehicle routing problem, Two, dimensional loading, Time, dependent, Genetic algorithm, Simulated annealing algorithm
  • Parham Azimi, Ramtin Rooeinfar, Hani Pourvaziri
    In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has different transporting vehicles and the cost of travel through each city is dependent on the transporting vehicles type. The aim is to determine an optimal sequence of visited cities with minimum traveling times by available transporting vehicles within a limited budget. First, the mathematical model of TSPMT is presented. Next, since the problem is NP-hard, a new hybrid parallel simulated annealing algorithm with a new coding scheme is proposed. To analyze the performance of the proposed algorithm, 50 numerical examples with different budget types are examined and solved using the algorithm. The computational results of these comparisons show that the algorithm is an excellent approach in speed and solution quality.
    Keywords: Traveling salesman problem, Transporter vehicles, Budget constraint, Mathematical programming, Simulated annealing algorithm
  • میرمهدی سید اصفهانی*، مجتبی حاجیان حیدری، سعید جابری
    در دهه های اخیر قابلیت اطمینان به عنوان یکی از ویژگی های طراحی محصولات در بسیاری از صنایع از جمله صنایع دفاعی و هوافضا کاربردهای بسیاری پیدا کرده و به شدت مورد توجه واقع شده است. هدف اصلی در مهندسی قابلیت اطمینان بهبود عملکرد سیستم در طول زمان می باشد. استفاده از سیستم های با قطعات مازاد یکی از راه های بهبود قابلیت اطمینان است که معمولا در این نوع سیستم ها، دسترسی به اطلاعات دقیق جهت تعیین تعداد بهینه قطعات مازاد همیشه به راحتی امکان پذیر نیست. به همین منظور برای ارزیابی و تجزیه و تحلیل سیستم از منطق فازی استفاده می-شود. در این مقاله یک مدل ریاضی برای تخصیص بهینه تعداد اجزای مازاد هر مرحله از یک سیستم چند مرحله ای با ساختارهای سری-موازی، k-از-n و جانشینی با هدف حداکثرسازی قابلیت اطمینان سیستم و با توجه به محدودیت های وزن و هزینه سیستم ارائه شده که در این مدل قابلیت اطمینان، وزن و هزینه اجزا و نیز وزن و هزینه سیستم، فازی در نظر گرفته شده است. در انتها یک مثال عددی با در نظر گرفتن اعداد فازی مثلثی و ذوزنقه ای و با استفاده از روش های غیرفازی کردن مختلف، بیان شده و مقادیر متغیرها به وسیله الگوریتم فراابتکاری شبیه سازی تبرید محاسبه شده و نتایج ارائه گردیده اند. نتایج نشان دادند که ساختار جانشینی، قابلیت اطمینان بالاتری برای سیستم به وجود می آورد.
    کلید واژگان: قابلیت اطمینان فازی، غیر فازی کردن، بهینه سازی قابلیت اطمینان، الگوریتم شبیه سازی تبرید
    M. Seyed Esfahani*, M. Hajian Heidary, S. Jaberi
    In recent years, reliability as a design characteristic of products has widespread applications in many industries including defense and aerospace industries and became attractive issue. The main aim of reliability engineering is to improve system performance. Use of redundancy components is one of the ways for reliability improvement, although usually it is not possible to gain exact data in this type of systems to determine optimum number of redundancy components. Therefore, fuzzy logic has been introduced for assessing and analyzing the systems. This study presents a mathematical model for optimal allocation of the number of redundant components at each stage of multi-stage systems with structures such as parallel-series and standby to maximize system reliability subjecting to cost and weight constraints; which in this model reliability and cost and weight of each components and cost and weight of system are considered as fuzzy parameters. At last a numerical example regarding to triangular and trapezoidal fuzzy numbers and using different methods for defuzzification is surveyed and value of variables is computed with a simulated annealing meta-heuristic approach and the results are presented.
    Keywords: Fuzzy reliability, Defuzzification methods, Reliability optimization, Simulated annealing algorithm
  • مهدی سیف برقی، زهرا بستان، شیرین
    در این مطالعه، مدل مکان یابی بهینه با سرورهای ثابت مورد بررسی قرار گرفته است. در مدل پیشنهاد شده، دو تابع هدف حداقلکردن هزینه سفر و انتظار مشتریان برای دریافت خدمت و نیز حداقل کردن هزینه استقرار تسهیلات با در نظر گرفتن سیستم صف M/M/K استفاده شده است که در مطالعات قبلی این موضوع در نظر گرفته نشده است. بهمنظور حل مدل پیشنهادی از الگوریتم ابتکاری آنیلینگ شبیه سازی شده و نیز روش LP متریک بهمنظور یکپارچگی اهداف استفاده شده است. در نهایت بهمنظور نمایش اعتبار مدل پیشنهادی، چند مثال ارائه شده و نتایج حاصل از حل آنها گزارش شده است.
    کلید واژگان: مکان یابی، تئوری صف، الگوریتم آنیلینگ شبیهسازیشده3، روش LP متریک
    Mahdi Seif Barghy *, Z. Bostan Shirin
    In this paper, the facility location problem with immobile servers is studied. In proposed model, tow objective functions have been considered: (1) minimizing the average customer waiting time and (2) minimizing the fixed cost of facility installation. The M/M/K queuing system has been used to formulate the problem. Also Customers are assumed to visit the closest open facility. Simulated Annealing algorithm with LP metric framework has been used to solve the proposed model. Several examples are presented to demonstrate the applications of the proposed methodology.
    Keywords: Facility location, Queuing theory, Simulated Annealing algorithm, LP metric method
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال