Grasshopper Optimization Algorithm
در نشریات گروه فنی و مهندسی-
نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال بیست و پنجم شماره 3 (پیاپی 89، پاییز 1403)، صص 207 -216
با توجه به رشد جمعیت شهرها و تعداد وسایل نقلیه که به صورت تصاعدی در حال افزایش است، یک چالش در پارکینگ ها، جایابی وسایل نقلیه است. در یک سیستم پارکینگ هوشمند، راننده می تواند بدون تاخیر و با صرف انرژی کمتر پارک کند؛ ولی الزام آن استفاده از حسگرها (جای پارک خالی) و راهنماهای پارکینگ برای این منظور است. با پیشرفت تحقیقات در اینترنت اشیا، محققان در سیستم پارکینگ هوشمند مبتنی بر حسگرهای بی سیم، راهکارهای امیدوارکننده ای ارائه نمودند. از جمله این تحقیقات، استفاده از الگوریتم گرگ خاکستری (GWO) در موقعیت یابی بهینه حسگرهای بی سیم در محیط اینترنت اشیای پارکینگ است. در این مقاله با توجه به قدرت جستجو و همگرایی بالای الگوریتم بهینه سازی ملخ (GOA) برای اولین بار از این الگوریتم در جایابی حسگرهای بی سیم در پارکینگ استفاده شده است. الگوریتم بهینه سازی ملخ برای مشخص کردن بهترین گره های لنگر برای جمع آوری داده از سایر حسگرها به کار می رود؛ به طوری که بتواند خطای موقعیت یابی و میزان مصرف انرژی حسگرها را کاهش و طول عمر آنها را افزایش دهد. نتایج نشان داد که روش پیشنهادی توانسته به طور میانگین بهبود %92/5 در کاهش خطای موقعیت یابی، %43/6 در کاهش میزان مصرف انرژی و %23/6 در افزایش میزان طول عمر شبکه نسبت به الگوریتم گرگ خاکستری داشته باشد. همچنین روش پیشنهادی توانسته زمان بیشتری برای مرگ اولین گره داشته باشد و این یک مزیت مهم در پارکینگ های هوشمند بوده است؛ زیرا کارایی تمام حسگرها در محیط پارکینگ الزامی می باشد.
کلید واژگان: الگوریتم بهینه سازی ملخ، پارکینگ هوشمند، جایابی حسگرها، موقعیت یابی حسگرهاConsidering the growth of the population of cities and the number of vehicles that are increasing exponentially, a challenge in parking lots is the positioning of vehicles. In a smart parking system, the driver can park without delay and by spending less energy; But its requirement is to use sensors (empty parking spaces) and parking guides for this purpose. With the progress of research in the Internet of Things, researchers have provided promising solutions in the smart parking system based on wireless sensors. Among these researches is the use of the gray wolf algorithm (GWO) in the optimal positioning of wireless sensors in the Internet of Things parking environment. In this article, due to the search power and high convergence of the Grasshopper Optimization Algorithm (GOA), this algorithm is used for the first time in the positioning of wireless sensors in the parking lot. The grasshopper optimization algorithm is used to determine the best anchor nodes to collect data from other sensors; So that it can reduce the positioning error and energy consumption of the sensors and increase their lifespan. The results showed that the proposed method was able to achieve an average improvement of 5.92% in reducing the positioning error, 6.43% in reducing the amount of energy consumption and 23.6% in increasing the lifetime of the network compared to the gray wolf algorithm. Also, the proposed method has been able to have more time for the first node to die, and this is an important advantage in smart parking because the efficiency of all sensors in the parking environment is required.
Keywords: Grasshopper Optimization Algorithm, Smart Parking System, Sensor Positioning -
In this paper, we propose a novel state estimation plan using Adaptive Neuro-Fuzzy Inference System (ANFIS). To increase the speed and accuracy of estimation, an individual ANFIS is used for each bus. To improve the accuracy of training, the grasshopper optimization algorithm (GOA) is used for the training and optimization of ANFIS parameters. The main advantage of GOA training of ANFIS parameters is the increase in speed and accuracy in estimating power system state variables. One of the main features of the proposed design is its ability to provide an appropriate state estimation when incomplete data is sent to the control center due to the disconnection of communication or the failure of the measurement devices. The recovery of the missed data is implemented by the Group Method of Data Handling (GMDH) neural network. The GMDH neural network is widely used due to its proper speed for function estimation and approximation. Incomplete information obtained from measurements to estimate the state is processed by the GMDH neural network to recover lost information. The output of this neural network, which is the retrieval of complete measurement information, is given to ANFIS to estimate the state of the power system as input.Keywords: State Estimation, Adaptive Neuro-Fuzzy Inference System (ANFIS), Grasshopper optimization algorithm, Group Method of Data Handling (GMDH) eural network
-
مصرف انرژی در فرآیند مسیریابی یکی از چالش های مهم در اینترنت اشیا است؛ چراکه گره های شبکه از نظر منبع انرژی با محدودیت مواجه هستند. لذا ارایه الگوریتم های مسیریابی انرژی آگاه همواره مورد توجه بوده است. یکی از روش هایی که در این حوزه عملکرد قابل قبولی از خود نشان داده است؛ طرح مساله در قالب مسایل بهینه سازی است. در این مقاله یک رویکرد انرژی آگاه برای مسیریابی در اینترنت اشیا پیشنهاد گردیده که در آن از الگوریتم بهینه سازی ملخ بهبودیافته با تیوری آشوب برای زمانبندی خواب و بیدار گره ها استفاده شده است. برای بررسی کارایی روش پیشنهادی از سه معیار ارزیابی انرژی باقیمانده، طول عمر شبکه و نرخ پوشش استفاده شد. بررسی یافته ها در دو سناریو مختلف (کارایی در طول زمان و کارایی به ازای تعداد گره های مختلف) نشان داد که روش پیشنهادی همواره در تمامی سناریو ها و به ازای همه معیارهای ارزیابی کارایی بهتری نسبت به طرح های پایه دارد.کلید واژگان: مسیریابی، اینترنت اشیا، مصرف انرژی، تئوری آشوب، الگوریتم بهینه سازی ملخIn most Internet of Things (IoT) applications, network nodes are limited in terms of energy source. Therefore, the need for innovative methods to eliminate energy loss which shortens the life of networks is fully felt in such networks. One of the optimization techniques of energy consumption on the Internet of things is efficient energy routing that the required energy can be reduced by choosing an optimal path. In this paper, an informed or efficient energy approach is proposed for routing on the Internet of Things in which focus is on the sleep-wake schedule of nodes; therefore, a new optimization algorithm called chaos fuzzy grasshopper optimization algorithm was used. In chaos fuzzy grasshopper algorithm, the initial population of grasshoppers is generated by Lorenz chaos theory and the input and output parameters of the algorithm are adjusted by fuzzy approach. To evaluate the efficiency of the proposed method, three criteria of evaluation of remaining energy, network life and coverage rate were used. Investigating the findings in two different scenarios (efficiency over time and efficiency per number of different nodes) showed that the proposed method always is better than the base methods in all scenarios and for all performance evaluation criteria. So that in the study of the death of 30% of nodes which indicates the life of the network, results showed that the proposed method of the paper (FLGOA) has 9% better efficiency than FGOA, 12% better than GOA and 16% better than GSO. Also, the findings about the remaining energy of the network showed that the proposed method has 16% better efficiency than FGOA method, 21% better than GOA and 22% better than GSO. Finally, studies in the coverage rate evaluation criterion showed that the proposed method has 12% coverage rate better than FGOA method, 15% better than GOA and 16% better than GSO.Keywords: routing, Internet of Things, Chaos Theory, Fuzzy Logic, Grasshopper Optimization Algorithm
-
Journal of Industrial Engineering and Management Studies, Volume:9 Issue: 2, Summer-Autumn 2022, PP 113 -128Balancing the production system’s resources like budget, equipment, and workers is one of the most important concerns of production managers. Managers seek to find an optimal way to balance their resources in production systems. By evaluating U-shaped assembly line papers, this investigation adds the literature on U-shaped assembly lines to the simultaneous examination of the balance ergonomic risks of human workers and current costs in the system when government offers tax benefits for using disabled workers. The mentioned outlook was not considered in previous papers. This study proposes a two-objective model to evaluate the effects of considering both robots and human workers in a U-shaped assembly line. The first objective is to minimize the system costs, and the second is to minimize the ergonomic risks. Human workers are divided into normal and disabled. The disabled workers are hired to enable tax benefits from the government. The constraint programming model for small and medium-sized problems and the grasshopper optimization algorithm (GOA) for big problems are developed to dissolve the problem. Numerical results show that two objective functions can also level system costs and ergonomic risks. The sensitivity analysis section analyzes three effective parameters (Production cycle time, Fatigue rate of human workers, and government tax benefit). It is shown that production cycle time directly affects using a robot or human workers (due to their mean time of speed), fatigue rate determines the allocation of tasks, and tax benefit helps to determine whether using disabled workers or not according objective functions. Also, it should be noticed the efficiency of GOA is shown by a comparison of several examples. Therefore, it is used for big-scale test problems.Keywords: U-shaped assembly line, ergonomic risks, human, robot workers, Constraint Programming, Grasshopper Optimization Algorithm
-
یادگیری مبتنی بر تضاد (OBL) یک رویکرد موثر برای بهبود عملکرد الگوریتم های بهینه سازی فراکاوشی است که معمولا برای حل مسایل مهندسی پیچیده استفاده می شود. در این مقاله استراتژی یادگیری متضاد برای ترکیب با الگوریتم بهینه سازی ملخ (GOA) ارایه می شود. در این الگوریتم پیشنهادی، راه حل های تولید شده توسط الگوریتم GOA مرتب شده و به دو راه حل خوب و بد تقسیم می شوند، سپس راه حل های بد انتخاب می شوند تا با استفاده از آموزش برمبنای تضاد، راه حل های جدید تولید شود. برای تایید قابلیت الگوریتم پیشنهادی، برخی از توابع ریاضیاتی معیار آزمایش شدند. علاوه بر این، عملکرد الگوریتم OGOA با اجرای یک طراحی بهینه از یک پل بتن مسلح با مقیاس واقعی ارزیابی شد. برای شناسایی پارامترهای موثر در طراحی اجزای سازه ای پل های بتن مسلح، تحلیل حساسیت انجام شده است. علاوه بر این، هزینه کل مصالح در ستون های پایه ها و عرشه پل به عنوان یک تابع هدف تعریف شد. همچنین ابعاد مقاطع و میلگردهای فولادی طولی به عنوان متغیرهای طراحی انتخاب می شوند. نتایج شبیه سازی ها پایداری و استحکام روش OGOA پیشنهادی را در مقایسه با GOA استاندارد نشان می دهد. همچنین الگوریتم پیشنهادی OGOA در طراحی بهینه ستون های و عرشه پل های بتنی مسلح یک روش کارآمد می باشد.
کلید واژگان: پل های بتنی مسلح، بهینه سازی، الگوریتم بهینه سازی ملخ، آموزش برمبنای تضادOpposition-based learning (OBL) is an effective approach to improve the performance of meta-heuristic optimization algorithms that are commonly used to solve complex engineering problems. In this paper, an opposite learning strategy is presented to combine with the Grasshopper Optimization Algorithm (GOA). In this proposed algorithm (OGOA), the solutions generated by the GOA algorithm are sorted and divided into good and bad solutions, then the bad solutions are selected to generate new solutions using opposition-based learning. To verify the performance of the proposed algorithm, some benchmark mathematical functions were tested. In addition, the performance of the OGOA algorithm was evaluated by implementing an optimal design of a real-scale reinforced concrete bridge. To identify the effective parameters in the design of structural components of reinforced concrete bridges, sensitivity analysis has been performed. In addition, the total cost of materials in the foundation columns and bridge deck was defined as an objective function. Also, the dimensions of sections and longitudinal steel bars are selected as design variables. The simulation results show the stability and robustness of the proposed OGOA method compared to the standard GOA. Also, the proposed OGOA is an efficient method for the optimal design of columns and decks of reinforced concrete bridges.
Keywords: Reinforced concrete bridges, Optimization, Grasshopper Optimization Algorithm, Opposition-based learning -
امروزه شبکه های کامپیوتری نقش مهم و کاربردی در ارتباطات و تبادل داده ها دارند و در زندگی انسانها انواع مختلفی از شبکه های کامپیوتری پا به عرصه وجود گذاشته است که یکی از آنها شبکه اینترنت اشیاء است. در اینترنت اشیا گره های شبکه می توانند اشیا هوشمند باشد و از این نظر این شبکه دارای گره های زیادی است و ترافیک بالایی در این شبکه وجود دارد. مانند هر شبکه کامپیوتری، اینترنت اشیا با چالش ها و مشکلات خاص خود مواجه است که یکی از آنها مساله نفوذ به شبکه و ایجاد اختلال در آن است. در این پایان نامه تمرکز بر روی تشخیص نفوذ مبتنی بر آنومالی در شبکه اینترنت اشیا با استفاده از داده کاوی است. در این پژوهش پس از جمع آوری و آماده سازی داده ها از ماشین بردار پشتیبان بهبود یافته با الگوریتم بهینه سازی ملخ به عنوان روش پیشنهادی در جهت تشخیص نفوذ مبتنی بر آنومالی در اینترنت اشیا استفاده می شود و الگوریتم بهینه سازی ملخ پارامترهای ماشین بردار پشتیبان را به صورت بهینه تعیین می کند و نتایج با طبقه بندهای بگینگ و k- نزدیک ترین همسایه و ماشین بردار پشتیبان پایه بر اساس انواع خطا و تحلیل آماری خطا مورد مقایسه قرار می گیرد. نتایج شبیه سازی نشان از دقت 97.2% در روش پیشنهادی و عملکرد بهتر در مقایسه با سایر روش ها دارد.کلید واژگان: تشخیص نفوذ مبتنی بر آنومالی، اینترنت اشیا، ماشین بردار پشتیبان، الگوریتم بهینه سازی ملخComputer networks play an important and practical role in communication and data exchange, and they also share resources with complete ease. Today, various types of computer networks have emerged, one of which is the Internet of Things. In the Internet of Things, network nodes can be smart objects, and in this sense, this network has many nodes and there is a lot of traffic in this network. Like any computer network, it faces its own challenges and problems, one of which is the issue of network intrusion and disruption. This dissertation focuses on detecting anomaly-based intrusion into the Internet of Things using data mining. In this study, after collecting and preparing data, the improved support vector machine with grasshopper optimization algorithm is used as a proposed method to detect anomaly-based intrusion in the Internet of Things. The bagging and k-nearest neighbor classifiers and Basic SVM are compared based on error types and standard performance criteria. The simulation results show 97.2% accuracy in the proposed method and better performance compared to other methods.Keywords: anomaly-based intrusion detection, IoT, Support vector machine, grasshopper optimization algorithm
-
Wireless sensor networks have become extensively applied in various fields with their advance. They may be formed freely and simply in many areas with no infrastructure. Also, they gather information about environmental phenomena for decent efficiency and event analysis and send it to base stations. The absence of infrastructure in such networks, on the other hand, limits the sources; therefore, the nodes are powered by a battery with inadequate energy. As a result, preserving energy in such networks is a critical task. Clustering the nodes and picking the cluster head based on the available transmission factors is an intriguing way for reducing energy consumption in these networks, as the average energy consumption of the nodes is lowered and the network lifespan is increased. By combining the multi-objective grasshopper optimization algorithm and the harmony search, this study provides a novel optimization strategy for wireless sensor network clustering. The cluster head is chosen using the multi-objective grasshopper optimization algorithm, and information is communicated between the cluster head's nodes and the sink node using nearly optimum routing based on the harmony search. The simulation outcomes indicate that when the functionality of the multi-objective grasshopper optimization algorithm and the harmony search are taken into account, the suggested technique outperforms the previous methods in terms of data delivery rate, energy consumption, efficiency, and information packet transmission.
Keywords: Wireless Sensor Networks, routing, grasshopper optimization algorithm, Harmony search -
With the accelerated development of Internet finance, electronic funds transfer, and the rapid growth of credit card activity, credit cards play a very important role in every area of life today. There are some risks in this regard that are considered serious threats to both issuers and cardholders. The increasing number of fraudulent credit card transactions forged credit cards and fraudulent use of expired credit cards have led to increased losses. Therefore, finding fraud detection techniques accurately and quickly has become an important topic in current investigations. In this study, after normalizing and reducing the dimensionality of the data using the PCA algorithm, we used the modified perceptron neural network and the grasshopper algorithm to classify the data. In this study, we use the grasshopper algorithm to adjust the weights and biases of neural networks. In the end, we were able to achieve 99.20% accuracy.
Keywords: Fraud Detection, Grasshopper Optimization Algorithm, Neural Network -
In this paper, multilayer perceptron neural network (MLP-NN) training is used by the grasshopper optimization algorithm with the tuning of control parameters using a fuzzy system for the big data sonar classification problem. With proper tuning of these parameters, the two stages of exploration and exploitation are balanced, and the boundary between them is determined correctly. Therefore, the algorithm does not get stuck in the local optimization, and the degree of convergence increases. So the main aim is to get a set of real sonar data and then classify real sonar targets from unrealistic targets, including noise, clutter, and reverberation, using GOA-trained MLP-NN developed by the fuzzy system. To have accurate comparisons and prove the GOA performance developed with fuzzy logic (called FGOA), nine benchmark algorithms GOA, GA, PSO, GSA, GWO, BBO, PBIL, ES, ACO, and the standard backpropagation (BP) algorithm were used. The measured criteria are concurrency speed, ability to avoid local optimization, and accuracy. The results show that FGOA has the best performance for training datasets and generalized datasets with 96.43% and 92.03% accuracy, respectively.
Keywords: Classification, Fuzzy System, Grasshopper Optimization Algorithm, MLP-NN, Sonar -
انرژی های تجدیدپذیر در سال های اخیر به دلیل محدودیت و احتمال اتمام منابع سوخت های فسیلی و مسایل زیست محیطی مرتبط به شدت توسعه یافته است. مهمترین چالش در این نوع سیستم ها، دستیابی به اندازه بهینه برای داشتن یک سیستم مقرون به صرفه بر اساس ذخیره انرژی خورشیدی و بادی است. در این مقاله بهینه سازی سیستم هیبرید بادی-خورشیدی با سیستم ذخیره باتری برای تامین یک بار مشخص ساعتی با هدف حداقل سازی هزینه های سالیانه سیستم و احتمال تلفات عرضه توان مورد توجه قرار گرفته است. هزینه های سالیانه سیستم شامل هزینه های سرمایه گذاری اولیه، هزینه نگهداری و هزینه تعویض تجهیزات می باشد. هدف بهینه سازی، تعیین بهینه تعداد پنل های خورشیدی، توربین های بادی، تعداد باتری ها، ارتفاع برج بادی و زاویه پنل خورشیدی نسبت به تابش خورشید است. به این منظور الگوریتم جدید بهینه سازی ملخ مورد استفاده قرار گرفته است. همچنین در این مطالعه، اثر تغییرات راندمان اینورتر، تغییرات تقاضای بار و اثر تغییرات ماکزیمم احتمال تلفات عرضه توان بر طراحی سیستم مورد ارزیابی قرار گرفته است. نتایج شبیه سازی نشان می دهد که کاهش راندمان، افزایش بار و حداکثر قابلیت اطمینان در سیستم در قالب کاهش احتمال تلفات عرضه توان موجب افزایش هزینه های سالیانه انرژی سیستم می گردد. به علاوه، نتایج حاصله موید برتری روش بهینه سازی ملخ نسبت به روش اجتماع ذرات در دست یابی به تابع هدف بهتر و هزینه کمتر می باشد.کلید واژگان: احتمال عدم تامین بار، باتری، بهینه سازی، توربین بادی، الگوریتم بهینه سازی ملخRenewable energy has been developed in recent years due to the limited sources of fossil fuels, their possibility of depletion, and the related environmental issues. The main challenges of these type of systems is reaching to the optimum size in order to have an affordable system based on storing the solar and wind energy. In this paper, optimization of a solar-wind hybrid system is presented with a saving battery system for supplying a specific hourly load annually to minimize annual system expenses and the probability of Loss of Power Supply Probability (LPSP). Annual expenses of the system include initial investment, maintenance, and replacement costs. The purpose of optimization is to determine the numbers of solar panels, wind turbines, batteries, the height of the wind tower, and the angle of the solar panel toward solar radiation. For this issue, a new method named Grasshopper Optimization Algorithm (GOA) is employed. Also, the effects of changes in inverter efficiency, load demand, and of maximum probability of LPSP on system designing are evaluated. Simulation results show that the efficiency reduction, load increase, and increasing the load and maximum reliability in the system in the form of reducing of LPSP lead to an increase in annual energy costs of systems. Furthermore, the results indicate the superiority of the GOA method toward particle swarm optimization (PSO) in reaching better target function and less cost.Keywords: grasshopper optimization algorithm, Optimization, loss of power supply probability, particle swarm optimization, solar-wind hybrid system
-
Most humanitarian relief items' investigations try to satisfy demands in disaster areas in an appropriate time and reduce the rate of causality. Time is an essential element in humanitarian relief items; the quietest response time, the more rescued people. Reducing response time with high reliability is the main objective of this research. In our investigation, monitoring the route’s situation after occurrence disaster with drones and motorcycles is planned for collecting information about routes and demand points in the first stage. The collected information is analyzed by the disaster management to determine the probability of each scenario. By evaluating collected data, the route repair groups are sent to increase the route’s reliability. In the final step, the relief items operation allocates the relief items to demand points. All in all, this research tries to present a practical model and real situation to survive more people after occurrence disaster. An exact solver solves the evolutionary model in small and medium scales; the developed model in big scale is solved by Grasshopper Optimization Algorithm (GOA), and then results are evaluated. The evaluation results indicate the positive effect of valid initial information on the humanitarian supply chain’s performance.
Keywords: humanitarian relief supply chain, Monitoring Routes, Repairing groups, Reliability of routes, Grasshopper Optimization Algorithm -
Cybersecurity has turned into a brutal and vicious environment due to the expansion of cyber-threats and cyberbullying. Distributed Denial of Service (DDoS) is a network menace that compromises victims’ resources promptly. Considering the significant role of optimization algorithms in the highly accurate and adaptive detection of network attacks, the present study has proposed Hybrid Modified Grasshopper Optimization algorithm and Genetic Algorithm (HMGOGA) to detect and prevent DDoS attacks. HMGOGA overcomes conventional GOA drawbacks like low convergence speed and getting stuck in local optimum. In this paper, the proposed algorithm is used to detect DDoS attacks through the combined nonlinear regression (NR)-sigmoid model simulation. In order to serve this purpose, initially, the most important features in the network packages are extracted using the Random Forest (RF) method. By removing 55 irrelevant features out of a total of 77, the selected ones play a key role in the proposed model’s performance. To affirm the efficiency, the high correlation of the selected features was measured with Decision Tree (DT). Subsequently, the HMGOGA is trained with benchmark cost functions and another proposed cost function that enabling it to detect malicious traffic properly. The usability of the proposed model is evaluated by comparing with two benchmark functions (Sphere and Ackley function). The experimental results have proved that HMGOGA based on NR-sigmoid outperforms other implemented models and conventional GOA methods with 99.90% and 99.34% train and test accuracy, respectively.Keywords: DDoS detection, cyber-security, Grasshopper Optimization Algorithm, Random forest
-
Given that disasters are unavoidable, and many people are suffering from them each year, we should manage the emergencies and plan for them well to reduce mortality and financial losses. One of the measures that organizations must take after the disaster is the assessment of the conditions and needs of the people. We consider some characteristics for sites and roads and two teams for assessment as well as the uncertain assessment time to modeling. A multi-objective model is proposed in this study. The first objective function maximizes the gain from the assessment of areas and roads. The second and third objective functions maximize total coverage at damaged areas and roads. We use the LP-metric technique to solve small size problems in the GAMS software and the Grasshopper Optimization Algorithm (GOA) as a Meta-heuristic algorithm to solve a case study. Numerical results are presented to prove the credibility and efficiency of our model.Keywords: Post-disaster, Assessment, multi-objective, Grasshopper Optimization Algorithm
-
Marine Technology, Volume:7 Issue: 2, 2020, PP 112 -124Today, minimizing the cost of heat exchangers (HEs) is a major goal for the designer. In this study, a fast and reliable method is used to simulate, optimize design parameters and evaluate heat transfer enhancement and the economic optimization of STHE. Taking into account the importance of STHEs in industrial applications and the complexity in their geometry, the GOA methodology is adopted to obtain an optimal geometric configuration. The GOA is a metaheuristics search algorithm based on the mimics and simulates grasshoppers 'behavior in nature and the grasshoppers ' move to food sources. The total annual cost (TAC) (including the capital investment cost and the total operating cost consumption to overcome the pressure drop) is chosen as the objective function, and the design variables include number of tubes, number of tube passes, length of tubes, the arrangement of tubes, size and percentage of baffle cut, tube diameter, tubular step ratio have been considered. The developed algorithm is applied to two case studies and the results are compared with the original design and other optimization methods available in literature such as Genetic Algorithm (GA), Hybrid Genetic-Particle Swarm Optimization (GA-PSO), Gravitational Search Algorithm (GSA), Falcon Optimization Algorithm (FOA), Artificial Bee Colony (ABC), Bio- geography Based Optimization (BBO), Cuckoo Search Algorithm (CSA) and Firefly Algorithm (FFA). In order to investigate the feasibility of the proposed method, two case studies have been presented that show a significant TAC reduction of up to 30% with respect to traditional designed STHEs.Keywords: Economic Optimization, Shell-and-tube heat exchanger, Total Annual Cost, Grasshopper Optimization Algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.