artificial neural network
در نشریات گروه پزشکی-
Background
Antimicrobial resistance (AMR) in clinical and environmental Acinetobacter baumannii strains has been recognized as a worldwide challenge for public health. Artificial neural networks (ANNs), an artificial intelligence (AI) algorithm, is a computational model for understanding the complex relationship between input and output data. The ANNs model can support authorities in making proper prescriptions in a significantly shorter time frame, facilitating a more accurate treatment procedure while saving budget and required medical staff.
ObjectivesThe present study aimed to investigate whether AI can improve the detection of AMR A. baumannii isolates under experimental conditions.
MethodsClinical and environmental A. baumannii isolates were collected from hospitalized patients and the perimeter of hospitals. The minimum inhibitory concentrations (MICs) of isolates to antibiotics and biocides effective doses were determined using the microdilution broth test according to CLSI-2021 guidelines. The ANNs model was trained using a portion of in vitro datasets (i.e., train set), taking into account different characteristics of clinical/environmental isolates recorded for each isolate in the dataset. Finally, the ANNs model was used to predict the AMR class and biocides dose class of the laboratory dataset (i.e., test set), and results were compared with existing data to determine the accuracy of ANNs model predictions.
ResultsOn average, 35% of A. baumannii strains were isolated from clinical/environmental samples. The minimum sensitivity level [i.e., R class of ciprofloxacin (CIP5) and ticarcillin (TIC75)] was observed in 70% of clinical A. baumannii isolates, and the most effective dose of BZK and BZT biocides against environmental isolates was 256 µg/mL, while it was 128 µg/mL for CLX. Results showed that the prevalence of A. baumannii isolates resistant to antibiotics and biocides is high not only in hospitals but also in the environment, and the ANNs model can predict the classification of the remaining test dataset with approximately 90% accuracy.
ConclusionsThis measure can contribute to the prevention of the overuse and incorrect use of antimicrobial agents to combat rising resistance rates of A. baumannii by focusing on a wider variety of potentially effective parameters on the required dose of antimicrobial agents. This model can be practically used in hospitals as part of treatment protocols, highlighting the cheap and fast diagnosis and prescription.
Keywords: Acinetobacter Baumannii, Artificial Neural Network, Antimicrobial Resistance, Biocides, Nosocomial Infection -
مجله پزشکی دانشگاه علوم پزشکی تبریز، سال چهل و هفتم شماره 1 (پیاپی 175، فروردین و اردیبهشت 1404)، صص 86 -99
زمینه:
اختلال دوقطبی نوعی بیماری روانپزشکی با نوسان خلقی است. مشخصه این بیماری، دوره های افسردگی و شیدایی است.
روش کار:
در پژوهش حاضر، ابتدا سه پایگاه داده GSE35977، GSE12679 و GSE53987 مرتبط با بیماری اختلال دوقطبی از پایگاه داده پابمد استخراج شد. به این ترتیب، نمونه تحقیق شامل 218 نمونه انسانی و 9888458 ژن بود. سپس ژن هایی که با اختلال دوقطبی رابطه مستقیم داشتند، با استفاده از نرم افزار R استخراج شدند. اشتراک ژن ها از پایگاه داده ها به دست آمد. در نهایت، با استفاده از نرم افزار Cytoscape3.7.1 ژن های مشترک برای 12 حالت استخراج شد. برای به دست آوردن بهترین مدل ها، ژن های به دست آمده با شبکه عصبی مصنوعی و درخت، آموزش داده شد. برای بررسی بهینگی از چهار پارامتر از حساسیت، تشخیص پذیری، صحت و ناحیه زیر منحنی استفاده شد.
یافته ها:
پس از پیش پردازش با نرم افزار R، دویست و یک ژن مشترک به دست آمدند. 12 حالت 20 ژن و 10 ژن با نرم افزار Cytoscape 3.7.1 استخراج شدند. بهترین مدل 20 ژن در شبکه عصبی مصنوعی AUC برابر 72 درصد و مدل 10 ژن در مدل درخت AUC برابر 78 درصد ارایه شدند.
نتیجه گیری:
دو مدل برای تشخیص اختلال دوقطبی ارایه شد. یک مدل با استفاده از شبکه عصبی مصنوعی و توابع logistics و مدل دیگر با استفاده از درخت بود.
پیامدهای عملی:
از مدل آموزش داده شده برای غربال سربازان وظیفه مبتلا به اختلال دوقطبی با خطر عود و تشدید علایم بالا در سامانه تشخیص اختلال دوقطبی می توان استفاده کرد.
کلید واژگان: اختلال دوقطبی، نشانگر زیستی، الگوریتم یادگیری ماشین، شبکه عصبی مصنوعی، الگوریتم درختBackgroundBipolar disorder is a type of psychiatric disease characterized by periodic mood swings that include periods of depression and mania.
MethodsFirst, three datasets related to bipolar disorder, including GSE53987, GSE35977, and GSE12679, were extracted from the PubMed database, which included 218 human samples and 9 888 458 genes. Then, genes directly related to bipolar disorder were extracted using R programming language. The shared genes were obtained from the database and extracted for 12 states with Cytoscape 3.7.1. The obtained gene expression data were trained by artificial neural network and decision tree method to identify the best models. Four parameters of sensitivity, specificity, accuracy, and area under the curve (AUC) were used to check the optimality of the model resulting from the training of machine learning algorithms.
ResultsAfter R language preprocessing, 201 common genes were obtained. Then, 12 modes of 20 genes and 10 genes were extracted using the Cytohubba plugin in Cytoscape 3.7.1. The best model of 20 genes in the artificial neural network showed an AUC of 72% and the best model of 10 genes in the decision tree model showed an AUC of 78%.
ConclusionWe presented two models to diagnose bipolar disorder. One model was developed using artificial neural network and tanh functions and the other model was developed using decision tree algorithm.
Practical ImplicationsThe model developed by artificial neural network and the decision tree can be used in the diagnosis of bipolar disorder in order to screen conscripts who have this disorder with a high risk of relapse and exacerbation of symptoms.
Keywords: Bipolar Disorder, Biomarker, Machine Learning Algorithm, Artificial Neural Network, Tree Algorithm -
Background
The thyroid size increases in some diseases of this gland, which is known as goiter or thyromegaly. Thyromegaly is more prevalent in women than men. Thyroid ultrasound is a non-invasive, inexpensive, and safe method for assessing thyroid disorders. Length, width (W), and height measuring of the thyroid lobes and volume is a time-consuming process.
ObjectivesThe object of the present study was to offer a rapid artificial neural network (ANN) system for automatic detection of thyromegaly and to investigate the relationship between thyroid dimensions and its volume.
MethodsThe thyroid dimensions including longitudinal (L) diameter, anterior-posterior or depth (AP) diameter, W diameter, and AP diameter of isthmus were measured among 131 individuals, assigned to thyromegaly and normal groups during the years 2018 and 2019. Proposed ANN system containing of one hidden layer, 3 neurons, and one output for representing the presence of thyromegaly was created by MATALB software.
ResultsThe implementation of the neural network showed that the use of the measured parameters of the right lobe is able to detect thyromegaly with an accuracy of 94.74, and the isthmus information does not increase the accuracy of the network very much. Also, "width of the right lobe" is the most appropriate parameter and the isthmus thickness was the least important parameter for automatic detection of thyromegaly.
ConclusionsArtificial neural network as a decision-support system can be useful in reducing measurement error while performing ultrasound in detection of thyromegaly and also reducing time of diagnostic processes
Keywords: Thyromegaly, Artificial Neural Network, Ultrasound -
زمینه و هدف
گردشگری درمانی یکی از نوین ترین رسته های گردشگری است و پیش بینی تقاضای گردشگران درمانی برای یک جامعه یکی از مهم ترین پیش نیازهای صنعت گردشگری برای تامین زیرساخت های موردنیاز می باشد تا بتوان بیشترین بهره برداری را برای آینده این صنعت درآمد ساز داشته باشیم؛ ازاین رو در جهت شکوفایی بهتر صنعت گردشگری درمانی، هدف این پژوهش پیش بینی تقاضای گردشگران درمانی شهر یزد با استفاده از شبکه عصبی مصنوعی می باشد.
روش پژوهشپژوهش حاضر از نوع کمی می باشد که در تابستان و پائیز 1402 انجام شد. برای گردآوری اطلاعات از روش مطالعات میدانی استفاده گردید. جامعه آماری این مطالعه گردشگران درمانی مراجعه کننده به 4 بیمارستان دولتی شهر یزد در طی بازه زمانی 1394 تا 1401 بودند. در این مطالعه شاخص های درمانی بیمارستان های موردنظر و سایر شاخص های درمانی شهر یزد نظیر تعداد تخت های پذیرش بیماران، تعداد داروخانه، تعداد مراکز بهداشتی و غیره با توجه به فراگیری بیماری کرونا از اواخر سال 1398 تا اواخر سال 1400 مورد بررسی قرار گرفت. شاخص های موثر در این بررسی ابتدا شناسایی و با استفاده از مدل شبکه عصبی مصنوعی پیشنهادی، پیش بینی تعداد گردشگران درمانی برای سال آینده شهر یزد انجام شده است؛ برای بررسی بیشتر از روش های سری زمانی هم استفاده گردیده است.
یافته هابا استفاده از بررسی های انجام شده تعداد گردشگران درمانی ورودی به شهر یزد در ماه های مختلف سال 1402 پیش بینی گردید. همچنین برای بررسی میزان دقت پیش بینی ها در شبکه عصبی مصنوعی پیش بینی با مدل سری زمانی هم انجام شد. از نتایج این بررسی مشخص شد که میزان خطای داده های آموزش در شبکه عصبی مصنوعی و مدل سری زمانی به ترتیب 0/000618 و 0/0111131همچنین برای داده های تست به ترتیب 0/013346 و 0/0531902 بود که نشان دهنده برتری روش پیشنهادی است.
نتیجه گیریبا بهره گیری از پیش بینی تقاضای گردشگران درمانی می توان با فراهم نمودن زیرساخت های موردنیاز و واقعی گردشگران درمانی و همگون سازی امکانات شهری فعلی و موردنیاز، نسبت به جذب گردشگر بیشتر اقدام نمود که این موضوع منجر به افزایش درآمدهای اقتصادی حاصل و توسعه اقتصادی و اجتماعی شهر می گردد.
کلید واژگان: گردشگری درمانی، شبکه عصبی مصنوعی، مدل پیش بینی سری زمانی، یزدBackgroundMedical tourism is one of the newest types of tourism and predicting the demand of medical tourists for a society is one of the most important prerequisites of the tourism industry to provide the necessary infrastructure so that we can maximize the future of this income-generating industry. Therefore, in order to better develop the medical tourism industry, the purpose of this research is to predict the demand of medical tourists in Yazd using artificial neural network.
MethodsThe present quantitative study was conducted in the summer and fall of 2023. Field study method was used to collect data. The statistical population of this study was medical tourists referring to 4 government hospitals in Yazd city during 2015-2022. In this study, medical indicators of hospitals in question and other medical indicators of Yazd city, such as the number of patient admission beds, the number of pharmacies, the number of health centers, etc., were examined with respect to the spread of the coronavirus disease from late 2019 to late 2021. The effective indicators in this study were first identified and using the proposed artificial neural network model, the number of medical tourists for the next year in Yazd city was predicted. For further investigation, time series methods were also used.
ResultsUsing the conducted surveys, the number of medical tourists entering Yazd city was predicted in different months of 2023. Moreover, to check the accuracy of predictions in the artificial neural network, the prediction was also done with the time series model. The results of this study revealed that the error rate of training data in artificial neural network and time series model was 0.000618 and 0.011131, respectively, as well as 0.013346 and 0.0531902 for test data, respectively, indicating the superiority of the proposed method.
ConclusionBy taking advantage of the forecast of the demand for medical tourists, it is possible to attract more tourists by providing the necessary and real infrastructures for medical tourists and homogenizing the current and required urban facilities, which will lead to an increase in income and economic and social development of the city.
Keywords: Therapeutic Tourism, Artificial Neural Network, Time Series Prediction Model, Yazd -
Background
Mammography is the most fundamental and widely used method for detecting breast abnormalities. Distinguishing malignant from benign lesions requires extracting relevant information, which can be challenging and timeconsuming for radiologists. Computer-aided diagnosis (CAD) techniques can serve as complementary diagnostic tools, assisting radiologists in the early detection and analysis of abnormalities in mammograms.
ObjectivesThis study aimed to propose a CAD system for extracting significant features of abnormalities in breast mammograms using Curvelet transform and fractal analysis, and classifying breast tumors as malignant or benign based on the calculated features. Patients and
MethodsIn this study, an efficient feature extraction method was applied, utilizing Curvelet transform and fractal analysis, on a dataset comprising 113 abnormal images from the Mammographic Image Analysis Society (MIAS) database, which included 62 benign and 51 malignant cases. The method yielded 575 features, but due to potential irrelevance or redundancy, a multi-objective optimization (MOO) approach based on a genetic algorithm (GA) for an artificial neural network (ANN), named GA-MOO-ANN, was proposed to obtain and focus on an optimal and effective feature set. As a result of this approach, a set of 17 efficient features was extracted. The proposed algorithm was implemented in MATLAB 2014a, and the performance metrics were calculated using 6-fold cross-validation.
ResultsThe experimental results demonstrated exceptional performance, with an accuracy (Acc) of 98.2%, specificity (Sp) of 100%, sensitivity (Se) of 96.8%, positive predictive value (PPV) of 100%, negative predictive value (NPV) of 96.2%, and an impressive area under the curve (AUC) of 0.98, providing comparable results to other recent methods.
ConclusionThe current findings suggest that the proposed method could be a valuable tool for breast cancer diagnosis, potentially reducing the number of unnecessary breast biopsies. This method may lead to more efficient patient evaluation and earlier detection of breast tumors.
Keywords: Breast Cancer, Curvelet Transform, Multi-Objective Optimization, Artificial Neural Network -
Background
Breast cancer (BC) is the most common cancer in women, and it is important to identify models that can accurately predict mortality in patients with this cancer. The aim of the present study was to use the elastic net regression and artificial neural network (ANN) models in diagnosing and predicting factors affecting BC mortality.
Study DesignA cross-sectional study.
MethodsThe data of 2,836 people with BC during 2014-2018 were analyzed in this study. Information was registered in the cancer registration system of Kerman University of Medical Sciences. Death status was considered the dependent variable, while age, morphology, tumor differentiation, residence status, and residence place were regarded as independent variables. Sensitivity, specificity, accuracy, area under the receiver operating characteristic curve (AUC), precision, and F1-score were used to compare the models.
ResultsBased on the test set, the elastic net regression determined factors affecting BC mortality (with sensitivity of 0.631, specificity of 0.814, AUC of 0.629, accuracy of 0.792, precision of 0.318, and F1-score of 0.42) and ANN did so (with sensitivity of 0.66, specificity of 0.748, AUC of 0.704, accuracy of 0.738, precision of 0.265, and F1-score of 0.37).
ConclusionThe sensitivity and AUC of the ANN model were higher than those of the elastic net regression, but the specificity, accuracy, precision, and F1-score of the elastic net were higher than those of the ANN. According to the purpose of the study, two models can be used simultaneously. Based on the results of models, morphology, tumor differentiation, and age had a greater effect on death.
Keywords: Elastic Net Regression, Artificial Neural Network, Breast Cancer -
مقدمه
انتخاب مدل مناسب برای تشخیص سرطان سینه اهمیت زیادی دارد، زیرا مدل های نامناسب ممکن است دقت تشخیص را کاهش دهند و منجر به نتایج نادرست شوند. این خطاها می توانند به تصمیم گیری های نادرست بالینی منجر شوند. در این راستا، آینده پژوهی می تواند ابزار موثری برای شناسایی و انتخاب مدل های مناسب تشخیصی باشد.
روش کاراین مطالعه با استخراج مقالات مرتبط با تشخیص سرطان سینه مبتنی بر هوش مصنوعی آغاز شد. تعداد مقالات مربوط به هر الگوریتم مشخص و الگوریتم هایی با کمتر از 50 مقاله حذف شدند. سپس روند سالانه انتشار مقالات تحلیل شد. یک مدل سری زمانی مبتنی بر شبکه عصبی مصنوعی برای پیش بینی روند تحقیقات در دو سال آینده طراحی شد که الگوریتم های با بیشترین تمرکز پژوهشی را شناسایی می کند.
یافته هاپس از حذف مقالات زیر حد آستانه، 2308 مقاله در هشت دسته شامل یادگیری عمیق، شبکه عصبی مصنوعی، ماشین بردار پشتیبان، منطق فازی، خوشه بندی، درخت تصمیم، بیزین و رگرسیون لجستیک قرار گرفتند. هشت مدل سری زمانی با استفاده از داده های هفت سال گذشته، پیش بینی کردند که یادگیری عمیق و شبکه عصبی مصنوعی بیشترین تمرکز پژوهشی آینده را به خود اختصاص خواهند داد.
نتیجه گیریاین پژوهش نشان داد که آینده پژوهی رویکردی موثر برای انتخاب روش های تشخیص سرطان سینه است. نتایج نشان می دهد که الگوریتم های شبکه عصبی مصنوعی و یادگیری عمیق بهترین عملکرد را دارند و می توانند راهنمایی برای پژوهش های آینده باشند.
کلید واژگان: آینده پژوهی، تشخیص، سرطان سینه، شبکه عصبی مصنوعی، یادگیری عمیقIntroductionSelecting an appropriate model for breast cancer diagnosis is critical. Unsuitable models can compromise diagnostic accuracy, lead to incorrect outcomes, and impact clinical decision-making. In this context, foresight models are valuable tools for identifying and selecting the most effective diagnostic models. The objective of this study was to identify optimal models for breast cancer detection using foresight models.
MethodThis study began by extracting articles related to artificial intelligence-based breast cancer diagnosis. The number of articles associated with each algorithm was determined, and algorithms referenced in fewer than 50 articles were excluded. Subsequently, annual publication trends were analyzed. A time series model based on artificial neural networks was developed to predict research trends over the next two years and to identify the algorithms expected to receive more research attention.
ResultsAfter applying the exclusion criteria, a total of 2,308 articles were categorized into eight groups: deep learning, artificial neural networks, support vector machines, fuzzy logic, clustering, decision trees, Bayesian methods, and logistic regression. Additionally, eight time series models were constructed using data from the past seven years, predicting that deep learning and artificial neural networks will lead future research efforts in breast cancer diagnosis.
ConclusionThis study highlights the effectiveness of foresight as a methodological approach for selecting optimal techniques for breast cancer diagnosis. The results indicate that artificial neural networks and deep learning demonstrate superior performance and are likely to be pivotal methodologies for future research in this area.
Keywords: Foresight, Diagnosis, Breast Cancer, Artificial Neural Network, Deep Learning -
BackgroundOne of the main reasons for neonatal deaths is preterm delivery, and infants who have survived preterm birth (PB) are at risk of significant health complications. However, an effective method for reliable and accurate prediction of preterm labor has yet to be proposed.ObjectiveThis study proposes an artificial neural network (ANN)-based approach for early prediction of PB, and consequently can hint physicians to start the treatment earlier, reducing the chance of morbidity and mortality in the infant.Material and MethodsThis historical cohort study proposes a feed-forward ANN with 7 hidden neurons to predict PB. Thirteen risk factors of PB were collected from 300 pregnant women (150 with preterm delivery and 150 normal) as the ANN inputs from 2018 to 2019. From each group, 70%, 15%, and 15% of the subjects were randomly selected for training, validation, and testing of the model, respectively.ResultsThe ANN achieved an accuracy of 79.03% for the classification of the subjects into two classes normal and PB. Moreover, a sensitivity of 73.45% and specificity of 84.62% were obtained. The advantage of this approach is that the risk factors used for prediction did not require any lab test and were collected in a questionnaire.ConclusionThe efficacy of the proposed approach for the early identification of pregnant women, who are at high risk of preterm delivery, leads to necessary care and clinical interventions, applied during the pregnancy.Keywords: Premature Birth, Artificial Neural Network, Machine Learning, Preterm Delivery, Preterm Labor, Pregnancy
-
Journal of Environmental Health and Sustainable Development, Volume:9 Issue: 3, Sep 2024, PP 2354 -2368Introduction
Modeling energy demand in different energy consuming sectors is a crucial measure for effective management of the energy sector and appropriate policies to increase productivity. The rising importance of energy resources in economic development is evident. Sustainable energy use is crucial for environmental protection and social progress. Understanding the factors affecting energy consumption is essential for effective energy management. Therefore, the purpose of the current study is to investigate the impact of environmental factors on household electricity consumption in Yazd city.
Materials and MethodsIn the present research, various environmental factors affecting electricity consumption, including air pollution, air temperature in homes, ground surface temperature, and green space were investigated. The effects of these factors on electricity consumption of subscribers were investigated with ANN and apriori methods.
ResultsAmong the environmental factors, the distance to the regional park, the area of the park, and the amount of vegetation at a distance of 300m have the greatest impact, respectively, and the average summer air temperature, the amount of vegetation at a radius of 500 m, the distance from the local park, and the average summer NDVI have had the smallest effect. Unlike neural network methods, apriori presents relationships between parameters affecting electricity consumption transparently in the form of rules.
ConclusionIt's used to identify the most frequently occurring elements and meaningful associations in a dataset. Greenspace can be a mitigation strateegy for reduction of energy consumption.
Keywords: Artificial Neural Network, Space Syntax, Electricity Consumption, Remote Sensing, Spatial Data Mining, Yazd City -
Developing an intelligent prediction system for successful aging based on artificial neural networksBackground
Due to the growing number of disabilities in elderly, Attention to this period of life is essential to be considered. Few studies focused on the physical, mental, disabilities, and disorders affecting the quality of life in elderly people. SA1 is related to various factors influencing the elderly’s life. So, the objective of the current study is to build an intelligent system for SA prediction through ANN2 algorithms to investigate better all factors affecting the elderly life and promote them.
MethodsThis study was performed on 1156 SA and non‑SA cases. We applied statistical feature reduction method to obtain the best factors predicting the SA. Two models of ANNs with 5, 10, 15, and 20 neurons in hidden layers were used for model construction. Finally, the best ANN configuration was obtained for predicting the SA using sensitivity, specificity, accuracy, and cross‑entropy loss function.
ResultsThe study showed that 25 factors correlated with SA at the statistical level of P < 0.05. Assessing all ANN structures resulted in FF‑BP3 algorithm having the configuration of 25‑15‑1 with accuracy‑train of 0.92, accuracy‑test of 0.86, and accuracy‑validation of 0.87 gaining the best performance over other ANN algorithms.
ConclusionsDeveloping the CDSS for predicting SA has crucial role to effectively inform geriatrics and health care policymakers decision making.
Keywords: Artificial Neural Network, Clinical Decision Support System, Elderly, Successful Ageing -
زمینه و هدف
برای کاهش هزینه های مدیریت سیستم های تصفیه فاضلاب، می توان از شبیه سازهای ریاضی و آماری استفاده نمود. این پژوهش باهدف پیش بینی کیفیت پساب یکی از تصفیه خانه های فاضلاب شهری شهر تهران با استفاده از الگوریتم های یادگیری ماشین طی سال های 1396 تا 1400 انجام گردید.
مواد و روش هااین مطالعه یک پژوهش توصیفی - تحلیلی است که در آن اطلاعات سیستم های پایش ورودی و خروجی تصفیه خانه فاضلاب دریافت و پاک سازی داده ها انجام گرفت. در مرحله دوم تبدیل داده ها به منظور آماده سازی ورود آن ها به الگوریتم های داده کاوی از طرق پالایش، پردازش و ایجاد متغیر ساختگی (Dummy) انجام شد. سپس، الگوریتم شبکه عصبی مصنوعی (ANN) و مدل درختی M5 به منظور یافتن بهترین مدل جهت پیش بینی غلظت COD در خروجی تصفیه خانه مورد بررسی قرار گرفت؛ در این راستا 70 درصد داده ها جهت یادگیری ماشین و 30 درصد به منظور اعتبارسنجی در نرم افزار پایتون مورداستفاده قرار گرفت. درنهایت با مدل رگرسیونی و مقایسه شاخص های R2 و RMSE به انتخاب بهترین مدل پرداخته شد.
یافته هانتایج نشان داد که ANN با ضریب تعیین 72/0عملکرد بهتری نسبت به مدل M5 با ضریب68/0در پیش بینی غلظت COD خروجی به عنوان شاخص کارایی تصفیه خانه دارد.همچنین بر اساس نتایج تحلیل رگرسیون از بین متغیرهای مستقل BOD5e و TSSe بیشترین همبستگی را با CODout داشتند.
نتیجه گیریدر پژوهش حاضر، نتایج مدل ANN و M5 بر اساس شاخص های آماری در محدوده قابل قبولی قرار گرفتند و می توان با موفقیت برای تخمین داده ها در تصفیه خانه های فاضلاب استفاده کرد.
کلید واژگان: الگوریتم های یادگیری ماشین، شبکه عصبی مصنوعی، درخت مدل M5، رگرسیون، اکسیژن خواهی شیمیاییBackgroundMathematical and statistical simulators can significantly reduce the management costs of wastewater treatment systems. This research aimed to predict the effluent quality of an urban wastewater treatment plant in Tehran using machine learning algorithms from 2017 to 2021.
MethodsThis descriptive-analytical study utilized monitoring data from the influent and effluent of the wastewater treatment plant, which were prepared for analysis. In the second stage, the data were refined, processed, and converted into dummy variables to facilitate entry into data mining algorithms. The Artificial Neural Network (ANN) algorithm and the M5 tree model were then evaluated to identify the best model for predicting the concentration of Chemical Oxygen Demand (COD) in the effluent. In this process, 70% of the data were allocated for training and 30% for validation using Python software. The best model was selected based on regression analysis, comparing the R² and RMSE indices.
ResultsThe findings indicated that the ANN model, with a coefficient of determination (R²) of 0.72, outperformed the M5 model, which had an R² of 0.68, in predicting the output COD concentration—an indicator of the treatment plant's efficiency. Additionally, regression analysis revealed that BOD₅ and TSS exhibited the highest correlation with CODout.
ConclusionThe results of the ANN and M5 models were within an acceptable range based on statistical indicators, demonstrating their potential for effectively estimating data in wastewater treatment plants.
Keywords: Machine Learning Algorithms, Artificial Neural Network, M5 Model Tree, Regression, Chemical Oxygen Demand -
Background
Gaining insight into the underlying molecular mechanisms of Alzheimer’s disease (AD) is crucial.
ObjectivesThis study aimed to employ a systems biology approach to identify new non-invasive diagnostic biomarkers for AD.
MethodsGene expression data series GSE122063 and microRNA (miRNA) expression data series GSE90828 were obtained from the Gene Expression Omnibus database. The Limma package under R software was used to assess differentially expressed miRNAs and differentially expressed genes (DEGs). Afterward the protein-protein interaction (PPI) network was constructed by the STRING software and evaluated with Cytoscape software. The multilayer perceptron neural network (MLP-NN), a widely used artificial neural network (ANN), was employed to classify two groups.
ResultsA total of 1388 DEGs were identified in AD patients compared to the control group, and 11 differentially expressed miRNAs were found in patients with mild cognitive impairment (MCI) in comparison to the control group. The results revealed that EGFR, identified as a hub gene, was targeted by miR-15b-3p and let-7a-5p, while TLR4, another hub gene, was targeted by miR-15b-3p. The MLP-NN constructed using both hsa-let-7a-5p and hsa-miR-15b-3p achieved a sensitivity of 0.857 and an area under the curve of 0.917 in detecting Alzheimer’s patients.
ConclusionOur findings suggest that miR-15b-3p, by targeting EGFR and TLR4, and let-7a-5p, by targeting EGFR, may play a significant role in AD. Additionally, the constructed ANN utilizing the expression levels of plasma miR-15b-3p and let-7a-5p could serve as a potential non-invasive diagnostic tool with high sensitivity for AD detection.
Keywords: Alzheimer’s disease, miRNA, Biomarker, Artificial neural network -
Background
The development of data mining techniques and the adaptive neuro-fuzzy inference system (ANFIS) in the last few decades has made it possible to achieve accurate predictions in medical fields.
ObjectivesThe present study aimed to use the ANFIS model, artificial neural network (ANN), and logistic regression to predict thyroid patients.
MethodsThis study aimed to predict thyroid disease using the UCI database, ANFIS and ANN models, and logistic regression. We only used four of its features as the input of the model and considered thyroid as a binary response (occurrence=1, non-occurrence=0) as the output of the model. Finally, three models were compared based on the accuracy and the area under the curve (AUC).
ResultsIn this study, out of the extensive UCI database, which includes 3,772 samples and over 20 features, only five specific features were utilized. Data include 1,144 males and 2,485 females. The results of multiple logistic regression analysis demonstrated that free T4 index (FTI) and thyroid stimulating hormone (TSH) had a significant effect on thyroid. The ANFIS model had a higher accuracy (99%) compared to ANN (96%) and the logistic regression model (94%) in the prediction of thyroid.
ConclusionAs evidenced by the obtained results, the forecasting performance of ANFIS is more efficient than other models. Moreover, the use of combined methods, such as ANFIS, to diagnose and predict diseases increases the accuracy of the model. Therefore, the results of this study can be used for screening programs to identify people at risk of thyroid disease.
Keywords: Adaptive neuro-fuzzy inference systems, Artificial neural network, Logistic regression, Thyroid -
IntroductionIn this study, we analyze the optimal intervention strategies that lead to reducing the effects of the COVID-19 pandemic by artificial neural networks (ANNs). Our aim is to investigate the effects of optimal control strategies, such as the implementation of government intervention, testing, and vaccination policies during outbreaks.MethodsWe utilized a controlled SIDAREV model to study the progression of the COVID-19 pandemic. Using Pontryagin's minimum principle (PMP) for the SIDAREV model, we defined an unconstrained minimization problem. Applying the Hamiltonian conditions, we approximated the obtained ordinary differential equations (ODE) using ANNs. We utilized the multilayer perceptron (MLP) to obtain the approximate solution of the states and co-states functions.ResultsWe observed the effects of optimal control strategies, and to show the efficiency of the proposed method, we compared it with the Runge-Kutta method through some examples.ConclusionUsing a mathematical model that simulates the behavior of the Covid-19 disease, we can examine the effects of controllers such as government interventions, tests and vaccinations with the neural network method. The results show that this method is useful in solving the problem of optimal control of infectious diseases.Keywords: Optimal control, Pontryagin's minimum principle, Artificial neural network, SIDAREV model, COVID-19
-
Purpose
The purpose of this study was to develop a robust and externally predictive in silico QSAR-neural network model for predicting plasma protein binding of drugs. This model aims to enhance drug discovery processes by reducing the need for chemical synthesis and extensive laboratory testing.
MethodsA dataset of 277 drugs was used to develop the QSAR-neural network model. The model was constructed using a Filter method to select 55 molecular descriptors. The validation set’s external accuracy was assessed through the predictive squared correlation coefficient Q2 and the root mean squared error (RMSE).
ResultsThe developed QSAR-neural network model demonstrated robustness and good applicability domain. The external accuracy of the validation set was high, with a predictive squared correlation coefficient Q2 of 0.966 and a root mean squared error (RMSE) of 0.063. Comparatively, this model outperformed previously published models in the literature.
ConclusionThe study successfully developed an advanced QSAR-neural network model capable of predicting plasma protein binding in human plasma for a diverse set of 277 drugs. This model’s accuracy and robustness make it a valuable tool in drug discovery, potentially reducing the need for resource-intensive chemical synthesis and laboratory testing.
Keywords: Quantitative structure-activity relationship, Artificial neural network, Prediction, Protein-binding -
زمینه و هدف
: امروزه با توجه به تغییرات اقلیمی و کاهش نزولات جوی در سطح کشور و به خصوص استان همدان، نرخ دسترسی به منابع آب سطحی کاهش یافته و لذا، میزان برداشت از منابع آب زیرزمینی به شدت افزایش یافته است که این موضوع موجب تغییر در کیفیت این منابع برای مصارف گوناگون شده است. در نتیجه، لزوم پایش کیفی منابع آب زیرزمینی نیز اهمیت دوچندانی یافته است. از این رو، در این پژوهش با استفاده از مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم فراابتکاری گرگ خاکستری نسبت به مدل سازی کیفی منابع آب زیرزمینی دشت کبودرآهنگ واقع در شمال غربی استان همدان در سال 1401 اقدام شد.
مواد و روش هادر این پژوهش، داده های کیفی منابع آب زیرزمینی مربوط به چاه های دشت کبودرآهنگ به سه بخش آموزش (%70)، اعتبارسنجی (%15) و آزمون (%15) تقسیم و با استفاده از مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم فراابتکاری گرگ خاکستری مدل سازی کیفی منابع آب زیرزمینی دشت کبودرآهنگ انجام شد.
یافته هانتایج نشان داد که مدل ارائه شده قابلیت بالایی در پیش بینی کیفیت آب زیرزمینی بر اساس سه متغیر pH، EC و TDS داشته است. مقدار 0/9975 = R نشان دهنده پیشگویی بالای متغیرها بود. نتایج حاصل از پیاده سازی شبکه عصبی مصنوعی بیان گر صحت بالا و همچنین قابلیت بالای پیش بینی و خطای اندک مدل بود که این خطا با کمک الگوریتم گرگ خاکستری کاهش یافت. بنابراین، می توان اذعان داشت علی رغم این که الگوریتم شبکه عصبی مصنوعی تا حد بالایی قادر به پیش بینی کیفیت آب زیرزمینی در منطقه مورد مطالعه بود، الگوریتم گرگ خاکستری با کاهش خطای پیش بینی، این عملکرد را تکمیل و مقدار بهینگی مدل را افزایش داد.
نتیجه گیریالگوریتم های شبکه عصبی مصنوعی و بهینه سازی گرگ خاکستری مکمل هم بوده و عملکرد خوبی برای پیش بینی تغییرات کیفی منابع آب زیرزمینی از خود نشان می دهند.
کلید واژگان: کیفیت آب زیرزمینی، مدل سازی هوشمند داده ها، شبکه عصبی مصنوعی، الگوریتم گرگ خاکستری، دشت کبودرآهنگBackgroundClimate change and declining rainfall have significantly reduced access to surface water in Iran, particularly in Hamedan Province. This has led to increased reliance on groundwater resources, consequently altering their quality for various uses. Therefore, this study was conducted to develope a qualitative model for assess of groundwater resources in Kabudarahang Plain, Hamedan Province, using an Artificial Neural Network (ANN) and the Gray Wolf Optimizer (GWO) algorithm.
MethodsQualitative data of groundwater resources in Kabudarahang Plain were collected and analyzed over a decade (2012-2022). ANN modeling was employed to predict groundwater quality changes. Additionally, the GWO algorithm was integrated to enhance prediction accuracy. The model utilized three output or dependent variables (TDS, EC, and pH) and six input or independent variables (calcium, magnesium, chloride, sulfate, sodium, and turbidity).
ResultsThe ANN model demonstrated that over 99% of water quality variations can be attributed to the six input variables. Moreover, the GWO algorithm effectively reduced average prediction errors from 0.0015 to 0.0008.
ConclusionThe ANN algorithm exhibited high prediction accuracy, low prediction error, and model optimality, which were further enhanced by the GWO algorithm. This suggests that while the ANN model successfully predicted groundwater quality changes in the study area, the GWO algorithm refined the predictions, and improving the model's overall performance. Considering the complementary nature and effectiveness of ANN and GWO algorithms for prediction, their application to predict qualitative changes in groundwater resources in other regions is recommended.
Keywords: Groundwater quality, Intelligent data modeling, Artificial neural network, Gray wolf algorithm, Kabudarahang Plain -
مقدمه
به دلیل افزایش ارایه خدمات الکترونیک به شهروندان در ادارات دولتی، تعداد کاربران کامپیوتر و در نتیجه بروز اختلالات اسکلتی عضلانی افزایش یافته است. لذا هدف این مطالعه پیش بینی و مدلسازی روابط پیچیده بین عوامل خطر اختلالات اسکلتی عضلانی در کاربران کامپیوتر شاغل در ادارات دولتی توسط شبکه عصبی مصنوعی بود.
روش کارمطالعه مقطعی حاضر در سال 2020 روی 342 نفر از کارکنان ادارات مختلف دولتی شهر ساوه در ایران انجام گردید. ابتدا محقق به منظور شناسایی اولیه مشکلات از محیط کار بازدید نموده و عوامل محیطی را اندازه گیری کرد. با استفاده از پرسشنامه نوردیک و روش ROSA، ارزیابی ریسک ارگونومیک و بررسی عوامل روانی اجتماعی صورت پذیرفت. بمنظور تدوین مدل، تاثیر عوامل مختلف در ایجاد اختلالات اسکلتی عضلانی با استفاده از آزمون رگرسیون لجستیک بررسی شد، سپس داده های حاصل توسط یکی از الگوریتم های شبکه عصبی جمع آوری و مدل سازی گردید و در نهایت یک مدل بهینه برای پیش بینی خطر اختلالات اسکلتی عضلانی توسط شبکه های عصبی مصنوعی ارایه شد.
یافته هانتایج نشان داد با افزایش سطح تعاملات اجتماعی، سطح تقاضا، کنترل و رهبری در شغل، اختلالات اسکلتی عضلانی در مردان و زنان کاهش می یابد. بین شیوع اختلالات اسکلتی-عضلانی و میزان تقاضای شغل، سطوح کنترل شغل، سطوح تعاملات اجتماعی، سطوح رهبری، سطوح جو سازمانی، سطح رضایت شغلی و سطوح استرس رابطه معناداری وجود داشت. علاوه بر این، بین گزارش درد در ناحیه گردن، شانه و مچ/دست با نمره کلی ROSA رابطه معناداری وجود داشت. همچنین بین گزارش درد یا ناراحتی در ناحیه گردن با امتیاز خطر صفحه نمایش گوشی، مچ/دست با نمره خطر صفحه کلید-موس و همچنین شانه، قسمت بالای کمر، آرنج و پایین کمر با نمره ریسک صندلی رابطه معنادار وجود داشت. دقت مدل ارایه شده جهت پیش بینی اختلالات اسکلتی عضلانی نیز حدود 5/88 % بود که نشان دهنده قابل قبول بودن نتایج است.
نتیجه گیرینتایج نشان داد چندین فاکتور در ایجاد اختلالات اسکلتی عضلانی نقش دارند که شامل عوامل فردی، محیطی، روانی اجتماعی و ایستگاه کاری می باشد. لذا در طراحی یک ایستگاه کاری ارگونومیک بایستی تاثیر توام عوامل ذکر شده مورد بررسی قرار گیرد. همچنین پیش بینی میزان تاثیرگذاری هر کدام از عوامل مذکور با استفاده از شبکه عصبی مصنوعی نشان داد که این نوع مدلسازی می تواند به عنوان ابزاری جهت پیشگیری از اختلالات اسکلتی عضلانی و یا دیگر اختلالات چندعاملی کاربردپذیر باشد.
کلید واژگان: مدل پیش بینی کننده، MSDS، شبکه عصبی مصنوعی، رایانهIntroductionDue to the increase in the provision of electronic services to citizens in government offices, the number of computer users and the occurrence of musculoskeletal disorders have increased. Therefore, this study aimed to predict and model the complex relationships between the risk factors of musculoskeletal disorders in computer users working in government offices by an artificial neural network.
Material and MethodsThe current cross-sectional study was conducted in 2020 on 342 employees of various government offices in Saveh city. First, the researcher visited the work environment to identify the problems and measure the environmental factors. Then, ergonomic risk assessment and psychosocial factors were evaluated using the Nordic questionnaire and the ROSA method. The effect of various factors in causing musculoskeletal disorders was investigated using a logistic regression test.Then the resulting data were collected and modeled by one of the neural network algorithms. Finally, artificial neural networks presented an optimal model to predict the risk of musculoskeletal disorders.
ResultsThe results showed that by increasing the level of social interactions, the level of demand, control, and leadership in the job, musculoskeletal disorders in men and women decrease. There was a significant relationship between the prevalence of musculoskeletal disorders and job demand, job control levels, social interaction levels, leadership levels, organizational climate levels, job satisfaction levels, and stress levels, in addition between reports of pain in the neck and shoulder and wrist/hand region. There was a significant relationship with the overall ROSA score. Also, there was a significant relationship between the report of pain or discomfort in the neck area with the phone screen risk score, wrist/hand with the keyboard-mouse risk score, and shoulder, upper back, elbow, and lower back with the chair risk score. The accuracy of the presented model for predicting musculoskeletal disorders was also about 88.5%, which indicates the acceptability of the results.
ConclusionThe results showed that several factors play a role in causing musculoskeletal disorders, which include individual, environmental, psychosocial, and workstation factors. Therefore, in the design of an ergonomic workstation, the effects of the mentioned factors should be investigated. Also, predicting the effectiveness of each of the mentioned factors using an artificial neural network showed that this type of modeling can be used to prevent musculoskeletal disorders or other multifactorial disorders.
Keywords: Predictive model, MSDS, Artificial neural network, Computer -
Introduction
This paper presents the development of an intelligent system for managing medical oxygen consumption using oximetry and barometry in the hospitals of Mashhad University of Medical Sciences, utilizing machine learning methods. The system integrates various sensors and machine learning algorithms to enable real-time monitoring and control of the oxygen supply chain.
Materials and MethodsThe proposed approach utilizes multiple sensors to measure the purity and pressure of medical oxygen, and this data is collected and processed using machine learning algorithms. The system uses a decision tree model to classify the purity and pressure readings and identify deviations from the specified parameters. The system also utilizes an artificial neural network model to predict future oxygen consumption levels, enabling proactive supply chain management. The system consists of two main components: the hardware component and the software component. The software component includes machine learning algorithms for data processing and system management.
ResultsThe proposed system has been tested in several hospitals affiliated with Mashhad University of Medical Sciences, and the results show that it can effectively monitor and manage medical oxygen consumption with high accuracy and reliability. The machine learning algorithms used in the system have the potential to improve patient safety by identifying potential issues in the oxygen supply chain before they become critical.
ConclusionIn conclusion, this paper presents an innovative and intelligent system that utilizes machine learning methods to enhance the management of medical oxygen consumption in hospitals significantly.
Keywords: Medical Oxygen Consumption, Oximetry, Barometry, Decision tree, Artificial neural network -
Background
Vulvovaginal candidiasis (VVC) is a common fungal infection caused by Candida species in the female genital tract.
ObjectivesThis study attempts to predict predisposition to VVC related to risk factors and clinical symptoms among vaginitis cases using the artificial neural network (ANN) model.
MethodsThis cross-sectional study was performed on 250 women referred to gynecology clinics in Birjand, Iran. A questionnaire was used to record participants' demographic information. Swabs were used for wet mounts and culture. Candida species were identified by morphological and physiological methods. The performance of the optimal neural network model was assessed by the sensitivity, specificity, and accuracy area under the ROC curve (AUC). Descriptive statistics were used for the statistical description of data, and chi-square test, t-test, and ANN analysis using SPSS application tools (Statistical Product and Service Solutions) version 22 software at 0.05 significant level.
ResultsThe prevalence of vulvovaginal candidiasis was 41.0%, and Candida albicans was the most frequently identified species (55.9%). The descriptive statistics (chi-square test and t-test) revealed no significant difference between the frequencies of Candida infection with demographic factors and clinical presentations. However, factors such as abortion history, number of sexual intercourse, dyspareunia, education, natural vaginal delivery (NVD), and lower abdominal pain included in our ANN model had significant differences (P < 0.05).
ConclusionsThe result of the ANN model revealed that using demographic factors and clinical symptoms can predict VVC infection. Therefore, this model can identify the effect of the clinical presentations and symptoms of infection.
Keywords: Artificial Neural Network, Vulvovaginal Candidiasis, Risk-factors, Clinical Symptoms, Statistical Model -
Background
Malaria remains a significant global health problem, with a high incidence of cases and a substantial number of deaths yearly. Early identification and accurate diagnosis play a crucial role in effective malaria treatment. However, underdiagnosis presents a significant challenge in reducing mortality rates, and traditional laboratory diagnosis methods have limitations in terms of time consumption and error susceptibility. To overcome these challenges, researchers have increasingly utilized Machine Learning techniques, specifically neural networks, which provide faster, cost-effective, and highly accurate diagnostic capabilities.
MethodsThis study aimed to compare the performance of a traditional neural network (NN) with a convolutional neural network (CNN) in the diagnosis and classification of different types of malaria using blood smear images. We curated a comprehensive malaria dataset comprising 1,920 images obtained from 84 patients suspected of having various malaria strains. The dataset consisted of 624 images of Falciparum, 548 images of Vivax, 588 images of Ovale, and 160 images from suspected healthy individuals, obtained from local hospitals in Iran. To ensure precise analysis, we developed a unique segmentation model that effectively eliminated therapeutically beneficial cells from the image context, enabling accurate analysis using artificial intelligence algorithms.
ResultsThe evaluation of the traditional NN and the proposed 6-layer CNN model for image classification yielded average accuracies of 95.11% and 99.59%, respectively. These results demonstrate that the CNN, as a primary algorithm of deep neural networks (DNN), outperforms the traditional NN in analyzing different classes of malaria images. The CNN model demonstrated superior diagnostic performance, delivering enhanced accuracy and reliability in the classifying of malaria cases.
ConclusionThis research underscores the potential of ML technologies, specifically CNNs, in improving malaria diagnosis and classification. By leveraging advanced image analysis techniques, including the developed segmentation model, CNN showcased remarkable proficiency in accurately identifying and classifying various malaria parasites from blood smear images. The adoption of machine learning-based approaches holds promise for more effective management and treatment of malaria, addressing the challenges of underdiagnosis and improving patient outcomes.
Keywords: Malaria Parasites, Image Processing, Artificial Neural Network, Deep Learning, Convolutional Neural Network
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.