به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

support vector machine (svm)

در نشریات گروه پزشکی
تکرار جستجوی کلیدواژه support vector machine (svm) در مقالات مجلات علمی
  • Varun Jain*
    Background

    Parkinson’s disease (PD) is a complex, progressive neurodegenerative disorder known to negatively impair patient gait. Therefore, with gait and vertical ground reaction force (VGRF) data, an association can be made between the data and Parkinson’s disease.

    Methods

    Data from 146 participants; 93 with Parkinson’s disease and 73 without Parkinson’s disease was obtained from a PhysioNet database for use in this article. A Fourier Analysis and several support vector machine learning models were computed in MATLAB to classify whether an individual had Parkinson’s disease.

    Results

    From the Fourier analysis, it was determined that a statistically significant difference was present between the VGRF data of individuals with and without Parkinson’s disease. Additionally, it was found that a Minimum Classification Error Optimized SVM machine learning model using Bayesian statistics was able to classify individuals with Parkinson’s disease using VGRF data at an accuracy of 67.1%, and sensitivity of 80.43%.

    Conclusion

    Therefore, it can be determined that vertical ground reaction force can predict Parkinson’s Disease with considerable accuracy which could be improved with an increased number of participants.

    Keywords: Fourier Analysis, Machine Learning, Support Vector Machine(SVM), Frequency Analysis, Power Spectrum Analysis, Biomedical Signals
  • Ytanvi Patel, Shreyansh Dalwadi, Nen Bakraniya, Apurva Desai, Nirmal Kachhiya, Het Parikh, Mohammad Javad Gholamzadeh, Ali- Mohammad Kamali, Milad Kazemiha, Prasun Chakrabarti, Mohammad Nami *
    Schizophrenia (SZ) is a mental illness that impairs a person's mental capacity, emotionaldispositions, and personal and social quality of life. Manual SZ patient screening is timeconsuming,expensive, and prone to human mistakes. As a result, a autonomous, relativelyaccurate, and reasonably economical system for diagnosing schizophrenia patients isrequired. Machine learning methods are capable of learning subtle hidden patterns fromhigh dimensional imaging data and achieve significant correlations for the classificationof Schizophrenia. In this study, the diverse types of symptoms of the affected person areselected which have the weights assigned by cross-correlations and the model classifiesthe probability of schizophrenia in the person based on the highest weighted symptomspresent in the report of the patient using machine learning classifiers. The classificationis made by various classifiers in which the Support Vector Machine (SVM) gives thebest result. In the neuroscience domain, it has been one of the most popular machinelearningtools. SVM with Radial Basis Function kernel helps to distinguish betweenpatients and healthy controls with significant accuracy of 76% without normalization andPrincipal Component Analysis (PCA). The K nearest neighbor’s algorithm also with nonormalization and PCA showed an accuracy of 73% in predicting SZ which is remarkablyclose to the SVM given the small size dataset.
    Keywords: Schizophrenia (SZ) Classification, Healthy Controls (HC), Support Vector Machine (SVM), Magnetic Resonance images (MRI), Principal Component Analysis (PCA), Functional MRI (fMRI), Structural MRI (sMRI), Independent Component Analysis (ICA)
  • M. Ashtiyani_S. Navaei Lavasani_A. Asgharzadeh Alvar_M. R Deevband *
    Background
    Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.
    Objective
    In this study, we aimed to evaluate the efficiency of discrete wavelet transform (DWT) based features extracted from HRV which were further selected by genetic algorithm (GA), and were deployed by support vector machine to HRV classification.
    Materials And Methods
    In this paper, 53 ECGs including 3 different beat types (ventricular fibrillation (VF), atrial fibrillation (AF) and also normal sinus rhythm (NSR)), were selected from the MIT/BIH arrhythmia database. The approach contains 4 stages including HRV signal extraction from each ECG signal, feature extraction using DWT (entropy, mean, variance, kurtosis and spectral component β), best features selection by GA and classification of normal and abnormal ECGs using the selected features by support vector machine (SVM).
    Results
    The performance of the classification procedure employing the combination of selected features were evaluated using several measures including accuracy, sensitivity, specificity and precision which resulted in 97.14%, 97.54%, 96.9% and 97.64%, respectively.
    Conclusion
    A comparative analysis with the related existing methods illustrates the proposed method has a higher potential in the classification of AF and VF. The attempt to classify the ECG signal has been successfully achieved. The proposed method has shown a promising sensitivity of 97.54% which indicates that this technique is an excellent model for computer-aided diagnosis of cardiac arrhythmias.
    Keywords: Heart Rate Variability (HRV), Wavelet Transform, Genetic Algorithm (GA), Support Vector Machine (SVM)
  • هاله آیت اللهی، لیلا غلامحسینی*، مسعود صالحی
    مقدمه

    بیماری های قلبی- عروقی نخستین علت مرگ در جهان هستند و براساس برآورد سازمان بهداشت جهانی، مرگ ناشی از بیماری های قلبی تا سال2030 به 23 میلیون مورد افزایش خواهد یافت. از این رو، به نظر می رسد استفاده از الگوریتم های داده کاوی برای پیش بینی بیماری عروق کرونر قلب بسیار کاربردی باشد. هدف از پژوهش حاضر مقایسه عملکرد الگوریتم های شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در پیش بینی بیماری عروق کرونر قلب بود.

    روش

    پژوهش حاضر از نوع توصیفی-تحلیلی و نمونه پژوهش شامل تمام بیماران بستری مبتلا به بیماری عروق کرونر قلب در سه بیمارستان تابعه دانشگاه علوم پزشکی آجا بین سال های 1395 تا 1396 بود. درمجموع، 1324 رکورد با 26 ویژگی موثر در این بیماری استخراج و پس از نرمال سازی و پاک سازی داده ها، در نرم افزار SPSS نسخه 23 وExcel نسخه 2013 وارد شدند. برای قالب بندی داده ها نیز از نرم افزار داده کاوی R3. 3. 2 استفاده گردید.

    نتایج

    الگوریتم ماشین بردار پشتیبان با میانگین درصد خطای مطلق پایین تر (112/03) ، آماره هاسمر-لمشو بالاتر (16/71) ، حساسیت (92/23) و ویژگی (74/42) نسبت به مدل شبکه عصبی دقیق تر بود. همچنین، مساحت زیر منحنی راک در الگوریتم SVM بیشتر از ANN بود و می توان نتیجه گرفت که این مدل دارای دقت بیشتری است.

    نتیجه گیری

    در این مطالعه، الگوریتم SVM نسبت به مدل شبکه عصبی دقت و عملکرد بهتری در پیش بینی بیماری عروق کرونر قلب نشان داد و دارای حساسیت و صحت بالاتری بود. با این حال پیشنهاد می گردد که نتایج مطالعه حاضر با یافته های حاصل از به کارگیری سایر الگوریتم های داده کاوی در پژوهش های آتی مورد مقایسه قرار گیرد.

    کلید واژگان: بیماری عروق کرونر، الگوریتم های داده کاوی، شبکه عصبی مصنوعی، ماشین بردار پشتیبان
    Haleh Ayatollahi, Leila Gholamhosseini, Masoud Salehi
    Introduction

    Cardiovascular diseases are the first leading cause of death worldwide. World health organization has estimated that the morality rate due to heart diseases will mount to 23 million cases by 2030. Hence, the use of data mining algorithms will be useful in predicting coronary artery disease. The objective of the present study was to compare the accuracy of the CAD predictions made by ANN and SVM techniques.

    Methods

    The present study was conducted via descriptive-analytical method. The research sample included all CAD patients hospitalized in three hospitals affiliated to AJA University of Medical Sciences from March 2016 to March 2017. Totally, 1324 records with 26 characteristics affecting the disease were extracted and after normalizing, and cleaning of the data, they were entered in SPSS statistics V23.0 & IBM Excel 2013; then, R3.3.2 data mining software was used to format data.

    Results

    SVM model with lower MAPE (112.03) and higher Hosmer-lemeshow statistic (16.71), sensitivity (92.23) and specificity (74.42) yielded better fitness of data and provides more accurate prediction than ANN model. On the other hand, since the area under the ROC curve in SVM algorithm was more than that in ANN, it could be concluded that this model had higher accuracy.

    Conclusion

    According to the results, SVM algorithm presented higher accuracy and better performance than ANN model and showed higher sensitivity and accuracy. It is suggested that in future studies, the results of the present study be compared with the findings resulted from applying other data mining algorithms

    Keywords: Coronary Artery Disease (CAD), Data mining algorithms, Artificial Neural Network (ANN), Support Vector Machine (SVM)
  • هانیه زمانیان، حسن فرسی
    مقدمه
    از آنجا که احساسات نقش مهمی در زندگی روزمره انسان بازی می کند، ایجاد روشی هوشمند جهت بهبود قابلیت تشخیص احساسات از سیگنال الکتروانفسالوگرافی (EEG) ، مبتنی بر تکنیک های پردازش سیگنال، ضروری به نظر می رسد. به علاوه، استفاده از طبقه بند ماشین بردار پشتیبان بهینه شده با الگوریتم تکاملی ژنتیک، از نوآوری های این پژوهش در بخش طبقه بندی می باشد.
    روش
    روش پیشنهادی با تمرکز بر روی استخراج و طبقه بندی ویژگی ها بر مبنای سیگنال های دریافتی از مغز سعی بر بهبود تشخیص احساسات دارد. در این راستا با شناسایی کانال های EEG که در استخراج ویژگی نقش دارند، از ویژگی های زمان – فرکانس سیگنال های EEG استفاده شده و این ویژگی ها توسط یک طبقه بند مناسب، طبقه بندی می شوند. الگوریتم پیشنهادی بر روی پایگاه داده DEAP که با ثبت سیگنال EEG از 32 شرکت کننده در هنگام تماشای 40 نوع ویدئو-موسیقی تهیه شده است، مورد آزمایش قرار گرفت.
    نتایج
    نتایج به دست آمده نشان می دهد که انتخاب 7.5 ثانیه و 3 کانال از داده های ورودی، نتایج قابل قبولی را ارائه می دهد. به علاوه باعث کاهش حجم محاسبات و حافظه مورد نیاز برای پردازش شده و به دقت 86/93% در طبقه بندی 4 احساس دست یافته است.
    نتیجه گیری
    بهبود دقت در تشخیص احساسات مبتنی بر سیگنال EEG گام های متعددی دارد که استخراج ویژگی های کارآمد و طبقه بندی موثر آن ها دو گام مهم در این راستا می باشد. بر اساس نتایج این تحقیق، در نظر گرفتن ویژگی های حوزه های زمان و فرکانس سیگنال های EEG و به کارگیری الگوریتم SVM چند کلاسه که توسط الگوریتم تکاملی ژنتیکی بهینه سازی شده است، عملکرد بهتری را فراهم می کند.
    کلید واژگان: تشخیص احساسات، EEG، شبکه های عصبی، ماشین بردار پشتیبان
    Hanieh Zamanian, Hassan Farsi Professor
    Introduction
    Since emotions play an important role in human life, it requires providing an intelligent method to detect emotions using electroencephalogram (EEG) signal based on signal processing techniques. In addition, in this research, using support vector machine (SVM) classifier with genetic evolutionary algorithm is a novelty in classification part.
    Methods
    The proposed method focuses on feature extraction and classification of received signals from brain to improve emotion detection. In this way, firstly, effective EEG channels are identified and then time and frequency features of EEG signals are extracted and classified by an appropriate classifier. The proposed method is applied on DEAP database which includes recorded EEG signals by 32 people watching and listening 40 videos and music.
    Results
    The experiments show that selection of 7.5 seconds and 3 EEG channels provides acceptable results. In addition, the proposed method reduces computations and required memory and results in 93.86% accuracy for 4 emotion classification.
    Conclusion
    Improvement in emotion detection based on EEG signals contains several steps in which effective features extraction and classification are two important steps. According to this research, using time-frequency features of EEG signals and optimized SVM classifier with genetic algorithm provides better results.
    Keywords: Emotion recognition, EEG signal, neural network, support vector machine (SVM)
  • Sheyda Bahrami *, Mousa Shamsi
    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organizationof the brain using hemodynamic responses. In this method, volume images of the entire brain areobtained with a very good spatial resolution and low temporal resolution. However, they always sufferfrom high dimensionality in the face of classification algorithms. In this work, we combine a supportvector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification byusing SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM forfeature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension ofdata sets for having less computational complexity and (ii) it is useful for identifying brain regions withsmall onset differences in hemodynamic responses. Our non-parametric model is compared withparametric and non-parametric methods. We use simulated fMRI data sets and block design inputsin this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets.fMRI simulated dataset has contrast 1–4% in active areas. The accuracy of our proposed method is93.63% and the error rate is 6.37%.
    Keywords: classification, FMRI, non-parametric methods, self-organizing map (SOM), support vector machine (SVM)
  • Masood Yarmahmoodi, Hossein Arabalibeik, Mehrshad Mokhtaran, Ahmad Shojaei
    Purpose
    In cataract surgery, the defected lens is replaced with an artificial intraocularlens (IOL). The refraction power of this lens is specified by ophthalmologistsbefore the surgery. There are different formulas that propose the IOL powerbased on corneal power and axial length. Six common formulas is used in thisstudy and the one which minimizes the postoperative error for a specific patienthave to be selected.
    Methods
    Refraction is measured three times at most, during six month after surgeryand the best result is considered as postoperative refraction for each patient. Asupport vector machine (SVM) is used to classify the data to two groups based onaxial length and corneal power. Each class needs a formula with a specific tendencytoward stronger or weaker IOL lenses according to the feature vector.
    Results
    Experimental tests lead to a nearly diagonal confusion matrix whichsupports the performance of the proposed method strongly. Mean Absolute Error(MAE) is 0.47 which shows 6% decrease in postoperative refraction error comparedto the best reported result.
    Conclusions
    In calculating IOL power, we expect stronger IOL powers for eyeshaving shorter axial length or weaker corneal power. In the contrary, a weaker IOLpower is expected for longer axial length and stronger corneal power. But experimentalresults show that for the first group, formulas proposing weaker powers winthe race for decreased postoperative refraction error while for the second group,formulas leading to stronger powers perform better. This shows that these formulasoverestimate and underestimate for marginal cases.
    Keywords: Intraocular Lens (IOL), cataract surgery, Support Vector Machine (SVM), axial length, corneal power
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال