Classification of schizophrenia from feature-model analysis of bilaterally correlated diagnosis, symptoms, and imaging findings pyramid
Article Type:
Research/Original Article (بدون رتبه معتبر)
Schizophrenia (SZ) is a mental illness that impairs a person's mental capacity, emotionaldispositions, and personal and social quality of life. Manual SZ patient screening is timeconsuming,expensive, and prone to human mistakes. As a result, a autonomous, relativelyaccurate, and reasonably economical system for diagnosing schizophrenia patients isrequired. Machine learning methods are capable of learning subtle hidden patterns fromhigh dimensional imaging data and achieve significant correlations for the classificationof Schizophrenia. In this study, the diverse types of symptoms of the affected person areselected which have the weights assigned by cross-correlations and the model classifiesthe probability of schizophrenia in the person based on the highest weighted symptomspresent in the report of the patient using machine learning classifiers. The classificationis made by various classifiers in which the Support Vector Machine (SVM) gives thebest result. In the neuroscience domain, it has been one of the most popular machinelearningtools. SVM with Radial Basis Function kernel helps to distinguish betweenpatients and healthy controls with significant accuracy of 76% without normalization andPrincipal Component Analysis (PCA). The K nearest neighbor’s algorithm also with nonormalization and PCA showed an accuracy of 73% in predicting SZ which is remarkablyclose to the SVM given the small size dataset.
Journal of Advanced Medical Sciences and Applied Technologies, Volume:6 Issue: 1, Dec 2021
54 to 63  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!