Reliability assessment of infinite slope stability using the jointly distributed random variables method

Author(s):
Message:
Abstract:
Slope stability analysis is a branch of geotechnical engineering that is highly amenable to probabilistic treatment. Probabilistic analysis of slope stability has received considerable attention in the literature, and has been used as an effective tool to evaluate uncertainty that is so prevalent in variables. In this research, the jointly distributed random variables method is used for probabilistic analysis and reliability assessment of the stability of infinite slopes without seepage. The selected stochastic parameters are internal friction angle, cohesion and unit weight, which are modeled using a truncated normal probability distribution function. The geometric parameters, such as height of slope and angle of slope relative to horizontal, are regarded as constant parameters. The results are compared with the Monte Carlo, Point Estimated, and First Order Second Moment methods. Comparison of the results indicates the superior performance of the proposed approach for assessment of reliability.
Language:
English
Published:
Scientia Iranica, Volume:19 Issue: 3, 2012
Page:
423
https://www.magiran.com/p1015451