Improving human-computer interaction in personalized TV recommender

In today's world of numerous sources of multimedia content, recommender systems help users find relevant content items. In our research the reasoning behind the recommendations generated by such systems was explored to check whether presenting users with explanations of recommended content increases their trust in the system. A content-based recommender for TV content has been developed which focuses on items attribute values. The system predicts user's ratings by classifying the vector of similarities between the user model and the items attributes. User's trust is increased by identifying attribute values that are the most relevant for them. User's feedback to the identified attribute values was used to improve the performance of the recommender algorithm. Tests in our experimental platform showed that the developed algorithms produce good results. The accuracy of the system was around 75% in the basic version and it further increased in the enhanced, while the identification of relevant attribute values achieved 86% precision.
Iranian Journal of Science and Technology Transactions of Electrical Engineering, Volume:36 Issue: 1, 2012
19 to 36  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!