Efficiency of Neural Networks for Estimating the Patch Load Resistance of Plate Girders with a Focus on Uncertainties in Material and Geometrical Properties
In this paper, a sensitivity analysis of artificial neural networks (NNs) is presented and employed for estimating the patch load resistance of plate girders subjected to patch loading. To evaluate the accuracy of the proposed NN model, the results are compared with the previously proposed empirical models, so that we can estimate the resistance of plate girders subjected to patch loading. The empirical models are calibrated, for improving the formulae, with experimental data set which was collected from the corresponding literature. NNs models are later trained and validated through using the existing experimental data. In this process several NNs architectures are taken into account. A set of good NNs models are selected and then analyzed regarding their robustness when confronted with the test data set and regarding their ability to reproduce the effect of uncertainty on the data. A sensitivity analysis is conducted herein in order to investigate the effect of variability in material and geometrical properties of plate girders. Thereafter, several estimates measuring the efficiency and the quality of the NN model and the calibrated models are obtained and discussed.
Civil Engineering Infrastructures Journal, Volume:47 Issue: 1, Jun 2014
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!