Building Semantic Kernel for Persian Text Classification with a Small Amount of Training Data
The original idea of semantic kernels is to use semantic features instead of terms appeared in the text document. In this article, the documents are transformed into a new k-dimensional feature space by applying Singular Value Decomposition on the Term-Document matrix and extracting 𝑘 eigenvectors with higher energy. The suggested semantic kernel causes severe reduction of dimensions which leads to two main conclusions. First, the computational complexity of the classifier is severely reduced. Second, the trained classifier has less sensitivity on the input terms; therefore, it can classify documents effectively. Experiments on Persian documents indicate the absolute superiority of the suggested semantic kernel in comparison to well-known vector space (Bag-of-Words) kernel, especially under the circumstances in which external semantic resources are not available and the amount of available training data is not sufficient.
Journal of Advances in Computer Research, Volume:6 Issue: 1, Winter 2015
125 to 136  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!