Evaluation of mixed mode fracture resistance of different asphalt concretes-An Experimental study

Message:
Abstract:
Asphalt cracking is one of the major distress and deterioration modes of pavements of roads especially in the cold regions. Different types of cracks such as top-down، reflecting and alligator cracks are usually observed in the asphalt pavements. These cracks may be initiated due to improper construction and implementation of paving process، daily or seasonal cyclic thermal loads and mechanical traffic loading induced by moving vehicles. Consequently، the investigation of crack growth behavior in the asphalt overlays is an important issue for design، construction and maintenance of roads and highways. Due to the applied thermal and mechanical stresses، the cracks initiated in the asphalt layers may often experience different deformations including mode I (tensile or opening)، mode II (shear or sliding) and any combinations of opening-shearing deformations (i. e. mixed mode I/II). Fracture toughness is a key fundamental parameter for investigating the crack growth behavior of cracked bodies. From the other hand، since asphalt mixtures are composite materials composed of aggregate، binder and air void، their fracture behavior might be affected by the asphalt characteristics specifications. Hence in this research the influences of asphalt characteristic specifications (including the type and size of aggregates، bitumen type، air void content and the mixture composition) is investigated experimentally on the mixed mode fracture toughness of different asphalt mixtures. For conducting the fracture toughness experiments، semi circular bend (SCB) specimens containing a vertical edge crack and subjected to asymmetric three-point bend loading was used. In order to study the influence of mixture characteristic specifications on the value of fracture toughness، two aggregate types (i. e. limestone and siliceous)، two aggregate sizes (with nominal maximum aggregate sizes 19 mm and 4. 75 mm)، two binders (60/70 and 85/100) and two air void percentages (i. e. 4% and 6%) were considered for manufacturing asphalt mixtures. The SCB specimens were then tested under two different loading mode mixities (i. e. Me = 0. 8 (mixed mode condition with dominantly tensile deformation) and Me = 0. 38 (mixed mode condition with dominantly shear deformation) at -15oC. The load-displacement curves for the whole samples were linear which revealed the linear and elastic behavior of asphalt mixtures at the tested low temperature. Thus، the corresponding values of fracture toughness (KI، KII and Keff) were determined using the obtained fracture loads and the available formula. The experimental result showed that the mixed mode cracking resistance of asphalt mixtures is significantly affected by their properties. Analysis of results indicated that the specimens containing 4% air void (i. e. with the more compacted mixtures) show greater resistant against cracking than the asphalt specimens containing 6% air void. Meanwhile by increasing the maximum aggregate size the fracture toughness is also increased. Mixtures made of limestone aggregates and softer binders had more fracture toughness. Analysis of results also showed that when the contribution of mode II deformation is increased، the influence of air void and aggregate size on the fracture toughness of tested asphalt mixtures becomes negligible.
Language:
Persian
Published:
Quranic Knowledge Research, Volume:15 Issue: 1, 2015
Pages:
73 to 85
magiran.com/p1405108  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!