An Experimental Investigation and Modeling of Asphaltene Adsorption Kinetics on Synthesized Iron Oxide Nanoparticles

Abstract:
Nanotechnology is of significant importance in many scientific fields. In view of engineering problems, nanomaterials have found wide practical applications. In this work, iron oxide nanoparticles called maghemite (γ-Fe2O3) were synthesized. The synthesized nanoparticles were used to adsorb asphaltene from prepared asphaltene-toluene solutions. Asphaltene adsorption kinetic behavior was modeled using experimental data. For the synthesis of maghemite nanoparticles, the co-precipitation of ferric and ferrous ions method as a simple and inexpensive method was selected. The crystalline structure and morphology of synthesized maghemite was investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. The nanoparticles were also characterized by using FT-IR spectrum. The results of these analyses showed that the γ-Fe2O3 nanoparticles had a crystalline structure with a size smaller than 50 nm and were spherical in shape. The maghemite nanoparticles were used for the adsorption of asphaltenes. The results obtained from adsorption kinetics analysis showed that asphaltene was rapidly adsorbed onto γ-Fe2O3 nanoparticles, and equilibrium was achieved in less than 2 hrs. The Lagergren pseudo-first-order and the pseudo-second-order models were employed for determination of the adsorption kinetics. It was found that the kinetic results were in good agreement with the pseudo-second-order model.
Language:
Persian
Published:
Petroleum Research, Volume:25 Issue: 82, 2015
Pages:
132 to 141
magiran.com/p1455702  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!